
Parallel Programming Models Applicable to
Cluster Computing and Beyond

Ricky A. Kendall,1, Masha Sosonkina,1 William D. Gropp,2

Robert W. Numrich,3 and Thomas Sterling4

1 Scalable Computing Laboratory, Ames Laboratory, USDOE, Ames, IA 50011
{rickyk,masha}@scl.ameslab.gov

2 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439 gropp@mcs.anl.gov

3 Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
rwn@msi.umn.edu

4 California Institute of Technology, Pasadena, CA 91125 tron@cacr.caltech.edu

Summary. This chapter centers mainly on successful programming models that
map algorithms and simulations to computational resources used in high-performance
computing. These resources range from group-based or departmental clusters to
high-end resources available at the handful of supercomputer centers around the
world. Also covered are newer programming models that may change the way we
program high-performance parallel computers.

1 Introduction

Solving a system of partial differential equations (PDEs) lies at the heart of
many scientific applications that model physical phenomena. The solution of
PDES—often the most computationally intensive task of these applications—
demands the full power of multiprocessor computer architectures combined
with effective algorithms.

This synthesis is particularly critical for managing the computational com-
plexity of the solution process when nonlinear PDEs are used to model a
problem. In such a case, a mix of solution methods for large-scale nonlinear
and linear systems of equations is used, in which a nonlinear solver acts as an
“outer” solver. These methods may call for diverse implementations and pro-
gramming models. Hence sophisticated software engineering techniques and a
careful selection of parallel programming tools have a direct effect not only on
the code reuse and ease of code handling but also on reaching the problem so-
lution efficiently and reliably. In other words, these tools and techniques affect
the numerical efficiency, robustness, and parallel performance of a solver.

For linear PDEs, the choice of a solution method may depend on the
type of linear system of equations used. Many parallel direct and iterative

2 Kendall et al.

solvers are designed to solve a particular system type, such as symmetric
positive definite linear systems. Many of the iterative solvers are also spe-
cific to the application and data format. There exists only a limited selection
of “general-purpose” distributed-memory iterative-solution implementations.
Among the better-known packages that contain such implementations are
PETSc [2], hypre [11], and pARMS [51]. One common feature of these pack-
ages is that they are all based on domain decomposition methods and include
a wide range of parallel solution techniques, such as preconditioners and ac-
celerators.

Domain decomposition methods simply divide the domain of the prob-
lem into smaller parts and describe how solutions (or approximations to the
solution) on each part is combined to give a solution (or approximation) to
the original problem. For hyperbolic PDEs, these methods take advantage
of the finite signal speed property. For elliptic, parabolic, and mixed PDEs,
these methods take advantage of the fact that the influence of distant parts
of the problem, while nonzero, is often small (for a specific example, con-
sider the Green’s function for the solution to the Poisson problem). Domain
decomposition methods have long been successful in solving PDEs on sin-
gle processor computers (see, e.g, [71]), and lead to efficient implementations
on massively parallel distributed-memory environments.5 Domain decompo-
sition methods are attractive for parallel computing mainly because of their
“divide-and-conquer” approach, to which many parallel programming models
may be readily applied. For example, all three of the cited packages use the
message-passing interface MPI for communication. When the complexity of
the solution methods increases, however, the need to mix different parallel
programming models or to look for novel ones becomes important. Such a
situation may arise, for example, when developing a nontrivial parallel incom-
plete LU factorization, a direct sparse linear system solver, or any algorithm
where data storage and movement are coupled and complex. The program-
ming model(s) that provide(s) the best portability, performance, and ease of
development or expression of the algorithm should be used. A good overview
of applications, hardware and their interactions with programming models
and software technologies is [17].

1.1 Programming Models

What is a programming model? In a nutshell it is the way one thinks about
the flow and execution of the data manipulation for an application. It is an
algorithmic mapping to a perceived architectural moiety.

In choosing a programming model, the developer must consider many fac-
tors: performance, portability, target architectures, ease of maintenance, code
revision mechanisms, and so forth. Often, tradeoffs must be made among

5No memory is visible to all processors in a distributed-memory environment;
each processor can only see their own local memory.

Parallel Programming Models 3

these factors. Trading computation for storage (either in memory or on disk)
or for communication of data is a common algorithmic manipulation. The
complexity of the tradeoffs is compounded by the use of parallel algorithms
and hardware. Indeed, a programmer may have (as many libraries and ap-
plications do) multiple implementations of the same algorithm to allow for
performance tuning on various architectures.

Today, many small and high-end high-performance computers are clusters
with various communication interconnect technologies and with nodes6 having
more than one processor. For example, the Earth Simulator [22] is a cluster of
very powerful nodes with multiple vector processors; and large IBM SP instal-
lations (e.g., the system at the National Energy Research Scientific Computing
Center, http://hpcf.nersc.gov/computers/SP) have multiple nodes with 4, 8,
16, or 32 processors each. These systems are at an abstract level the same kind
of system. The fundamental issue for parallel computation on such clusters
is how to select a programming model that gets the data in the right place
when computational resources are available. This problem becomes more dif-
ficult as the number of processors increases; the term scalability is used to
indicate the performance of an algorithm, method, or code, relative to a sin-
gle processor. The scalability of an application is primarily the result of the
algorithms encapsulated in the programming model used in the application.
No programming model can overcome the scalability limitations inherent in
the algorithm. There is no free lunch.

A generic view of a cluster architecture is shown in Figure 1. In the early
Beowulf clusters, like the distributed-memory supercomputer shown in Fig-
ure 2, each node was typically a single processor. Today, each node in a cluster
is usually at least a dual-processor symmetric processing (SMP) system. A
generic view of an SMP node or a general shared-memory system is shown in
Figure 3. The number of processors per computational node varies from one

Fig. 1. Generic architecture for a cluster system.

6A node is typically defined as a set of processors and memory that have a single
system image; one operating system and all resources are visible to each other in
the “node” moiety.

4 Kendall et al.

Fig. 2. Generic architecture for a distributed-memory cluster with a single proces-
sor.

installation to another. Often, each node is composed of identical hardware,
with the same software infrastructure as well.

Fig. 3. Generic architecture for a shared-memory system.

The “view” of the target system is important to programmers designing
parallel algorithms. Mapping algorithms with the chosen programming model
to the system architecture requires forethought, not only about how the data
is moved, but also about what type of hardware transport layer is used: for ex-
ample, is data moved over a shared-memory bus between cooperating threads
or over a fast Ethernet network between cooperating processes?

This chapter presents a brief overview of various programming models
that work effectively on cluster computers and high-performance parallel su-
percomputers. We cannot cover all aspects of message-passing and shared-
memory programming. Our goal is to give a taste of the programming models
as well as the most important aspects of the models that one must consider
in order to get an application parallelized. Each programming model takes
a significant effort to master, and the learning experience is largely based
on trial and error, with error usually being the better educational track. We
also touch on newer techniques that are being used successfully and on a few

Parallel Programming Models 5

specialty languages that are gaining support from the vendor community. We
give numerous references so that one can delve more deeply into any area of
interest.

1.2 Application Development Efforts

“Best practices” for software engineering are commonly applied in industry
but have not been so widely adopted in high-performance computing. Dubois
outlines ten such practices for scientific programming [18]. We focus here on
three of these.

The first is the use of a revision control system that allows multiple de-
velopers easy access to a central repository of the software. Both commercial
and open source revision control systems exist. Some commonly used, freely
available systems include Concurrent Versions System (CVS), Subversion, and
BitKeeper. The functionality in these systems includes

• branching release software from the main development source,
• comparing modifications between versions of various subunits,
• merging modifications of the same subunit from multiple users, and
• obtaining a version of the development or branch software at a particular

date and time.

The ability to recover previous instances of subunits of software can make de-
bugging and maintenance easier and can be useful for speculative development
efforts.

The second software engineering practice is the use of automatic build
procedures. Having such procedures across a variety of platforms is useful in
finding bugs that creep into code and inhibit portability. Automated identifi-
cation of the language idiosyncrasies of different compilers minimizes efforts of
porting to a new platform and compiler system. This is essentially normalizing
the interaction of compilers and your software.

The third software engineering practice of interest is the use of a robust
and exhaustive test suite. This can be coupled to the build infrastructure or,
at a minimum, with every software release. The test suite should be used to
verify the functionality of the software and, hence, the viability of a given re-
lease; it also provides a mechanism to ensure that ports to new computational
resources are valid.

The cost of these software engineering mechanisms is not trivial, but they
do make the maintenance and distribution easier. Consider the task of making
Linux software distribution agnostic. Each distribution must have different
versions of particular software moieties in addition to the modifications that
each distribution makes to that software. Proper application of these tasks is
essentially making one’s software operating system agnostic.

6 Kendall et al.

2 Message-Passing Interface

Parallel computing, with any programming model, involves two actions: trans-
ferring data among workers and coordinating the workers. A simple example
is a room full of workers, each at a desk. The work can be described by writ-
ten notes. Passing a note from one worker to another effects data transfer;
receiving a note provides coordination (think of the note as requesting that
the work described on the note be executed). This simple example is the back-
ground for the most common and most portable parallel computing model,
known as message passing. In this section we briefly cover the message-passing
model, focusing on the most common form of this model, the Message-Passing
Interface (MPI).

2.1 The Message-Passing Interface

Message passing has a long history. Even before the invention of the modern
digital computer, application scientists proposed halls full of skilled workers,
each working on a small part of a larger problem and passing messages to their
neighbors. This model of computation was formalized in computer science
theory as communicating sequential processes (CSP) [35]. One of the earliest
uses of message passing was for the Caltech Cosmic Cube, one of the first
scalable parallel machines [70]. The success (perhaps more accurately, the
potential success of highly parallel computing demonstrated by this machine)
spawned many parallel machines, each with its own version of message passing.

In the early 1990s, the parallel computing market was divided among sev-
eral companies, including Intel, IBM, Cray, Convex, Thinking Machines, and
Meiko. No one system was dominant, and as a result the market for parallel
software was splintered. To address the need for a single method for program-
ming parallel computers, an informal group calling itself the MPI Forum and
containing representatives from all stake-holders, including parallel computer
vendors, applications developers, and parallel computing researchers, began
meeting [32]. The result was a document describing a standard application
programming interface (API) to the message-passing model, with bindings for
the C and Fortran languages [53]. This standard quickly became a success. As
is common in the development of standards, there were a few problems with
the original MPI standard, and the MPI Forum released two updates, called
MPI 1.1 and MPI 1.2. MPI 1.2 is the most widely available version today.

2.2 MPI 1.2

When MPI was standardized, most message-passing libraries at that time de-
scribed communication between separate processes and contained three major
components:

• Processing environment – information about the number of processes and
other characteristics of the parallel environment.

Parallel Programming Models 7

• Point-to-point – messages from one process to another
• Collective – messages between a collection of processes (often all processes)

We will discuss each of these in turn. These components are the heart of
the message passing programming model.

Processing Environment

In message passing, a parallel program comprises a number of separate pro-
cesses that communicate by calling routines. The first task in an MPI pro-
gram is to initialize the MPI library; this is accomplished with MPI Init.
When a program is done with MPI (usually just before exiting), it must call
MPI Finalize. Two other routines are used in almost all MPI programs. The
first, MPI Comm size, returns in the second argument the number of processes
available in the parallel job. The second, MPI Comm rank, returns in the sec-
ond argument a ranking of the calling process, with a value between zero
and size−1. Figure 4 shows a simple MPI program that prints the number
of processes and the rank of each process. MPI COMM WORLD represents all the
cooperating processes.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World! I am %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

Fig. 4. A simple MPI program.

While MPI did not specify a way to run MPI programs (much as neither C
nor Fortran specifies how to run C or Fortran programs), most parallel com-
puting systems require that parallel programs be run with a special program.
For example, the program mpiexec might be used to run an MPI program.
Similarly, an MPI environment may provide commands to simplify compiling
and linking MPI programs. For example, for some popular MPI implementa-
tions, the following steps will run the program in Figure 4 with four processes,
assuming that program is stored in the file first.c:

mpicc -o first first.c
mpiexec -n 4 first

8 Kendall et al.

The output may be

Hello World! I am 2 of 4
Hello World! I am 3 of 4
Hello World! I am 0 of 4
Hello World! I am 1 of 4

Note that the output of the process rank is not ordered from zero to three. MPI
specifies that all routines that are not MPI routines behave independently,
including I/O routines such as printf.

We emphasize that MPI describes communication between processes, not
processors. For best performance, parallel programs are often designed to run
with one process per processor (or, as we will see in the section on OpenMP,
one thread per processor). MPI supports this model, but MPI also allows
multiple processes to be run on a single-processor machine. Parallel programs
are commonly developed on single-processor laptops, even with multiple pro-
cesses. If there are more than a few processes per processor, however, the
program may run very slowly because of contention among the processes for
the resources of the processor.

Point-to-Point Communication

The program in Figure 4 is a very simple parallel program. The individual
processes neither exchange data nor coordinate with each other. Point-to-point
communication allows two processes to send data from one to another. Data
is sent by using routines such as MPI Send and is received by using routines
such as MPI Recv (we mention later several specialized forms for both sending
and receiving).

We illustrate this type of communication in Figure 5 with a simple program
that sums contributions from each process. In this program, each process first
determines its rank and initializes the value that it will contribute to the sum.
(In this case, the sum itself is easily computed analytically; this program is
used for illustration only.) After receiving the contribution from the process
with rank one higher, it adds the received value into its contribution and sends
the new value to the process with rank one lower. The process with rank zero
only receives data, and the process with the largest rank (equal to size−1)
only sends data.

The program in Figure 5 introduces a number of new points. The most
obvious are the two new MPI routines MPI Send and MPI Recv. These have
similar arguments. Each routine uses the first three arguments to specify the
data to be sent or received. The fourth argument specifies the destination
(for MPI Send) or source (for MPI Recv) process, by rank. The fifth argument,
called a tag, provides a way to include a single integer with the data; in
this case the value is not needed, and a zero is used (the value used by the
sender must match the value given by the receiver). The sixth argument spec-
ifies the collection of processes to which the value of rank is relative; we use

Parallel Programming Models 9

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int size, rank, valIn, valOut;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Pick a simple value to add */

valIn = rank;

/* receive the partial sum from the right processes (this is

the sum from i=rank+1 to size-1) */

if (rank < size - 1) {

MPI_Recv(&valOut, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD,

&status);

valIn += valOut;

}

/* Send the partial sum on to the left (rank-1) process */

if (rank > 0) {

MPI_Send(&valIn, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD);

}

else {

printf("The sum is %d\n", valOut);

}

MPI_Finalize();

return 0;

}

Fig. 5. A simple program to add values from each process.

MPI COMM WORLD, which is the collection of all processes in the parallel pro-
gram (determined by the startup mechanism, such as mpiexec in the “Hello
World” example). There is one additional argument to MPI Recv: status.
This value contains some information about the message that some applica-
tions may need. In this example, we do not need the value, but we must still
provide the argument.

The three arguments describing the data to be sent or received are, in
order, the address of the data, the number of items, and the type of the data.
Each basic datatype in the language has a corresponding MPI datatype, as
shown in Table 1.

10 Kendall et al.

Table 1. Some major predefined MPI datatypes.

C Fortran

int MPI INT INTEGER MPI INTEGER
float MPI FLOAT REAL MPI REAL
double MPI DOUBLE DOUBLE PRECISION MPI DOUBLE PRECISION
char MPI CHAR CHARACTER MPI CHARACTER
short MPI SHORT

MPI allows the user to define new datatypes that can represent noncon-
tiguous memory, such as rows of a Fortran array or elements indexed by an
integer array (also called scatter-gathers). Details are beyond the scope of this
chapter, however.

This program also illustrates an important feature of message-passing pro-
grams: because these are separate, communicating processes, all variables,
such as rank or valOut, are private to each process and may (and often will)
contain different values. That is, each process has its own memory space,
and all variables are private to that process. The only way for one process
to change or access data in another process is with the explicit use of MPI
routines such as MPI Send and MPI Recv.

MPI provides a number of other ways in which to send and receive mes-
sages, including nonblocking (sometimes incorrectly called asynchronous) and
synchronous routines. Other routines, such as MPI Iprobe, can be used to de-
termine whether a message is available for receipt. The nonblocking routines
can be important in applications that have complex communication patterns
and that send large messages. See [27, Chapter 4] for more details and exam-
ples.

Collective Communication and Computation

Any parallel algorithm can be expressed by using point-to-point communica-
tion. This flexibility comes at a cost, however. Unless carefully structured and
documented, programs using point-to-point communication can be challeng-
ing to understand because the relationship between the part of the program
that sends data and the part that receives the data may not be clear (note
that well-written programs using point-to-point message passing strive to keep
this relationship as plain and obvious as possible).

An alternative approach is to use communication that involves all pro-
cesses (or all in a well-defined subset). MPI provides a wide variety of col-
lective communication functions for this purpose. As an added benefit, these
routines can be optimized for their particular operations (note, however, that
these optimizations are often quite complex). As an example Figure 6 shows
a program that performs the same computation as the program in Figure 5
but uses a single MPI routine. This routine, MPI Reduce, performs a sum re-

Parallel Programming Models 11

duction (specified with MPI SUM), leaving the result on the process with rank
zero (the sixth argument).

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, valIn, valOut;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Pick a simple value to add */

valIn = rank;

/* Reduce to process zero by summing the values */

MPI_Reduce(&valIn, &valOut, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

if (rank == 0) {

printf("The sum is %d\n", valOut);

}

MPI_Finalize();

return 0;

}

Fig. 6. Using collective communication and computation in MPI.

Note that this program contains only a single branch (if) statement that is
used to ensure that only one process writes the result. The program is easier
to read than its predecessor. In addition, it is effectively parallel; most MPI
implementations will perform a sum reduction in time that is proportional to
the log of the number of processes. The program in Figure 5, despite being a
parallel program, will take time that is proportional to the number of processes
because each process must wait for its neighbor to finish before it receives the
data it needs to form the partial sum.7

Not all programs can be conveniently and efficiently written by using only
collective communications. For example, for most MPI implementations, oper-

7One might object that the program in Figure 6 doesn’t do exactly what the
program in Figure 5 does because, in the latter, all of the intermediate results are
computed and available to those processes. We offer two responses. First, only the
value on the rank-zero process is printed; the others don’t matter. Second, MPI
offers the collective routine MPI Scan to provide the partial sum results if that is
required.

12 Kendall et al.

ations on PDE meshes are best done by using point-to-point communication,
because the data exchanges are between pairs of processes and this closely
matches the point-to-point programming model.

Other Features

MPI contains over 120 functions. In addition to nonblocking versions of point-
to-point communication, there are routines for defining groups of processes,
user-defined data representations, and testing for the availability of messages.
These are described in any comprehensive reference on MPI [72, 27].

An important part of the MPI design is its support for programming in
the large. Many parallel libraries have been written that make use of MPI; in
fact, many applications can be written that have no explicit MPI calls and
instead use libraries that themselves use MPI to express parallelism. Before
writing any MPI program (or any program, for that matter), one should check
to see whether someone has already done the hard work. See [28][Chapter 12]
for a summary of some numerical libraries for Beowulf clusters.

2.3 The MPI-2 Extensions

The success of MPI created a desire to tackle some of the features not in the
original MPI (henceforth called MPI-1). The major features include parallel
I/O, the creation of new processes in the parallel program, and one-sided (as
opposed to point-to-point) communication. Other important features include
bindings for Fortran 90 and C++. The MPI-2 standard was officially released
on July 18, 1997, and “MPI” now means the combined standard consisting of
MPI-1.2 and MPI-2.0.

Parallel I/O

Perhaps the most requested feature for MPI-2 was parallel I/O. A major
reason for using parallel I/O (as opposed to independent I/O) is performance.
Experience with parallel programs using conventional file systems showed that
many provided poor performance. Even worse, some of the most common file
systems (such as NFS) are not designed to allow multiple processes to update
the same file; in this case, data can be lost or corrupted. The goal for the
MPI-2 interface to parallel I/O was to provide an interface that matched the
needs of applications to create and access files in parallel, while preserving the
flavor of MPI. This turned out to be easy. One can think of writing to a file as
sending a message to the file system; reading a file is somewhat like receiving
a message from the file system (“somewhat,” because one must ask the file
system to send the data). Thus, it makes sense to use the same approach for
describing the data to be read or written as is used for message passing—a
tuple of address, count, and MPI datatype. Because the I/O is parallel, we

Parallel Programming Models 13

need to specify the group of processes; thus we also need a communicator. For
performance reasons, we sometimes need a way to describe where the data is
on the disk; fortunately, we can use MPI datatypes for this as well.

Figure 7 shows a simple program for reading a single integer value from
a file. There are three steps, each similar to what one would use with non-
parallel I/O:

1. Open the file. The MPI File open call takes a communicator (to specify
the group of processes that will access the file), the file name, the access
style (in this case, read-only), and another parameter used to pass addi-
tional data (usually empty, or MPI INFO NULL) and returns an MPI File
object that is used in MPI-IO calls.

2. Use all processes to read from the file. This simple call takes the file handle
returned from MPI File open, the same buffer description (address, count,
datatype) used in an MPI Recv call, and (also like MPI Recv) a status
variable. In this case we use MPI STATUS IGNORE for simplicity.

3. Close the file.

/* Declarations, including */

MPI_File fh;

int val;

/* Start MPI */

MPI_Init(&argc, &argv);

/* Open the file for reading only */

MPI_File_open(MPI_COMM_WORLD, "input.dat", MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh);

/* All processes access the file and read the same value into

val */

MPI_File_read_all(fh, &val, 1, MPI_INT, MPI_STATUS_IGNORE);

/* Close the file when no longer needed */

MPI_File_close(&fh);

Fig. 7. A simple program to read a single integer from a file.

Variations on this program, using other routines from MPI-IO, allow one
to read different parts of the file to different processes and to specify from
where in the file to read. As with message passing, there are also nonblocking
versions of the I/O routines, with a special kind of nonblocking collective
operation, called split-phase collective, available only for these I/O routines.

Writing files is similar to reading files. Figure 8 shows how each process
can write the contents of the array solution with a single collective I/O call.

14 Kendall et al.

#define ARRAY_SIZE 1000

/* Declarations, including */

MPI_File fh;

int rank;

int solution[ARRAY_SIZE];

/* Start MPI */

MPI_Init(&argc, &argv);

/* Open the file for reading only */

MPI_File_open(MPI_COMM_WORLD, "output.dat", MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

/* Define where each process writes in the file */

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_File_set_view(fh, rank * ARRAY_SIZE * sizeof(double),

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL);

/* Perform the write */

MPI_File_write_all(fh, solution, ARRAY_SIZE, MPI_DOUBLE,

MPI_STATUS_IGNORE);

/* Close the file when no longer needed */

MPI_File_close(&fh);

Fig. 8. A simple program to write a distributed array to a file in a standard order
that is independent of the number of processes.

Figure 8 illustrates the use of collective I/O, combined with file views,
to efficiently write data from many processes to a single file in a way that
provides a natural ordering for the data. Each process writes ARRAY SIZE
double-precision values to the file, ordered by the MPI rank of the process.
Once this file is written, another program, using a different number of pro-
cesses, can read the data in this file. For example, a non-parallel program
could read this file, accessing all of the data.

Several good libraries provide convenient parallel I/O for user applica-
tions. Parallel netCDF [50] and HDF-5 [23] can read and write data files in
a standard format, making it easy to move files between platforms. These li-
braries also encourage the inclusion of metadata in the file that describes the
contents, such as the source of the computation and the meaning and units of
measurements of the data. Parallel netCDF in particular encourages a collec-
tive I/O style for input and output, which helps ensure that the parallel I/O
is efficient. We recommend that an I/O library be used if possible.

Dynamic Processes

Another feature that was often requested for MPI-2 was the ability to create
and use additional processes. This is particularly valuable for ad hoc collec-
tions of desktop systems. Since MPI is designed for use on all kinds of parallel

Parallel Programming Models 15

computers, from collections of desktops to dedicated massively parallel com-
puters, a scalable design was needed. MPI must also operate in a wide variety
of environments, including ones where process creation is controlled by special
process managers and schedulers.

In order to ensure scalability, process creation in MPI is collective, both
over a group of processes that are creating new processes and over the group
of processes created. The act of creating processes, or spawning, is accom-
plished with the routine MPI Comm spawn. This routine takes the name of the
program to run, the command-line arguments for that program, the num-
ber of processes to create, the MPI communicator representing the group of
processes that are spawning the new processes, a designated root (the rank
of one process in the communicator that all members of that communicator
agree to), and an MPI Info object. The call returns a special kind of commu-
nicator, called an intercommunicator, that contains two groups of processes:
the original group (from the input communicator) and the group of created
processes. MPI point-to-point communication can then be used with this in-
tercommunicator. The call also returns an array of error codes, one for each
process.

Dynamic process creation is often used in master-worker programs, where
the master process dynamically creates worker processes and then sends the
workers tasks to perform. Such a program is sketched in Figure 9.

MPI_Comm workerIntercomm;

int errcodes[10];

...

MPI_Init(&argc, &argv);

...

MPI_Comm_spawn("./worker", MPI_ARGV_NULL, 10, MPI_INFO_NULL, 0,

MPI_COMM_SELF, &workerIntercomm, errcodes);

for (i=0; i<10; i++) {

MPI_Send(&task, 1, MPI_INT, i, 0, workerIntercomm);

...

}

Fig. 9. Sketch of an MPI master program that creates 10 worker processes and
sends them each a task, specified by a single integer.

MPI also provides routines to spawn different programs on different pro-
cesses with MPI Comm spawn multiple. Special values used for the MPI Info
parameter allow one to specify special requirements about the processes, such
as their working directory.

In some cases two parallel programs may need to connect to each other. A
common example is a climate simulation, where separate programs perform
the atmospheric and ocean modeling. However, these programs need to share

16 Kendall et al.

data at the ocean-atmosphere boundary. MPI allows programs to connect to
one another by using the routines MPI Comm connect and MPI Comm accept.
See [29, Chapter 7] for more information.

One-Sided Communication

The message-passing programming model relies on the sender and receiver
cooperating in moving data from one process to another. This model has
many strengths but can be awkward, particularly when it is difficult to co-
ordinate the sender and receiver. A different programming model relies on
one-sided operations, where one process specifies both the source and the des-
tination of the data moved between processes. Experience with BSP [34] and
the Cray SHMEM [14] demonstrated the value of one-sided communication.
The challenge for the MPI Forum was to design an interface for one-sided
communication that retained the “look and feel” of MPI and could deliver
good and reliable performance on a wide variety of platforms, including very
fast computers without cache-coherent memory. The result was a compromise,
but one that has been used effectively on one of the fastest machines in the
world, the Earth Simulator.

In one-sided communication, a process may either put data into another
process or get data from another process. The process performing the opera-
tion is called the origin process; the other process is the target process. The
data movement happens without explicit cooperation between the origin and
target processes. The origin process specifies both the source and destination
of the data. A third operation, accumulate, allows the origin process to per-
form some basic operations, such as sum, with data at the target process. The
one-sided model is sometimes called a put-get programming model.

Figure 10 sketches the use of MPI Put for updating “ghost points” used in
a one-dimensional finite difference grid. This has three parts:

1. One-sided operations may target only memory that has been marked as
available for use by a particular memory window. The memory window
is the one-sided analogue to the MPI communicator and ensures that
only memory that the target process specifies may be updated by another
process using MPI one-sided operations. The definition is made with the
MPI Win create routine.

2. Data is moved by using the MPI Put routine. The arguments to this routine
are the data to put from the origin process (three arguments: address,
count, and datatype), the rank of the target process, the destination of
the data relative to the target window (three arguments: offset, count,
and datatype), and the memory window object. Note that the destination
is specified as an offset into the memory that the target process specified
by using MPI Win create, not a memory address. This provides better
modularity as well as working with heterogeneous collections of systems.

3. Because only the origin processes call MPI Put, the target process needs
some way to know when the data is available. This is accomplished with

Parallel Programming Models 17

the MPI Win fence routine, which is collective over all the processes that
created the memory window (in this example, all processes). In fact, in
MPI the put, get, and accumulate calls are all nonblocking (for maximum
performance), and the MPI Win fence call ensures that these calls have
completed at the origin processes.

define ARRAYSIZE

double x[ARRAYSIZE+2];

MPI_Win win;

int rank, size, leftNeighbor, rightNeighbor;

MPI_Init(&argc, &argv);

...

/* compute the neighbors. MPI_PROC_NULL mean "no neighbor" */

leftNeighbor = rightNeighbor = MPI_PROC_NULL;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank > 0) leftNeighbor = rank - 1;

if (rank < size - 1) rightNeighbor = rank + 1;

...

/* x[0] and x[ARRAYSIZE+1] are the ghost cells */

MPI_Win_create(x, (ARRAYSIZE+2) * sizeof(double), sizeof(double),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

MPI_Win_fence(0, win);

MPI_Put(&x[1], 1, MPI_DOUBLE,

leftNeighbor, ARRAYSIZE+1, 1, MPI_DOUBLE, win);

MPI_Put(&x[ARRAYSIZE], 1, MPI_DOUBLE,

rightNeighbor, 0, 1, MPI_DOUBLE, win);

MPI_Win_fence(0, win);

...

MPI_Win_free(&win);

Fig. 10. Sketch of a program that uses MPI one-sided operations to communicate
ghost cell data to neighboring processes.

While the MPI one-sided model is similar to other one-sided models, it
has important differences. In particular, some models assume that the ad-
dresses of variables (particularly arrays) are the same on all processes. This
assumption simplifies many features of the implementation and is true for
many applications. MPI, however, does not assume that all programs are the
same or that all runtime images are the same (e.g., running on heterogeneous
platforms, which could be all IA32 processors but with different installed run-
time libraries for C or Fortran). Thus, the address of MyArray in the program

18 Kendall et al.

on one processor may not be the same as the address of the variable with
the same name on another processor (some programming models, such as
Co-Array Fortran, do make and require this assumption; see Section 5.2).

While we have touched on the issue of synchronization, this is a deep
subject and is reflected in the MPI standard. Reading the standard can create
the impression that the MPI model is very complex, and in some ways this
is correct. However, the complexity is designed to allow implementors the
greatest flexibility while delivering precisely defined behavior. A few simple
rules will guarantee the kind of behavior that many users expect and use. The
full rules are necessary only when trying to squeeze the last bits of performance
from certain kinds of computing platforms, particularly machines without
fully cache-coherent memory systems, such as certain vector machines that are
among the world’s fastest. In fact, rules of similar complexity apply to shared-
memory programming and are related to the pragmatic issues of memory
consistency and tradeoffs between performance and simplicity.

Other Features in MPI-2

Among the most important other features in MPI-2 are bindings for C++
and Fortran 90. The C++ binding provides a low-level interface that exploits
the natural objects in MPI. The Fortran 90 binding includes an MPI mod-
ule, providing some argument checking for Fortran programs. Other features
include routines to specify levels of thread safety and to support tools that
must work with MPI programs. More information may be found in [26].

2.4 State of the Art

MPI is now over twelve years old. Implementations of MPI-1 are widespread
and mature; many tools and applications use MPI on machines ranging from
laptops to the world’s largest and fastest computers. See [55] for a sampling
of papers on MPI applications and implementations. Improvements continue
to be made in the areas of performance, robustness, and new hardware. In
addition, the parallel I/O part of MPI-2 is widely available.

Shortly after the MPI-2 standard was released, Fujitsu had an implemen-
tation of all of MPI-2 except for MPI Comm join and a few special cases of
MPI Comm spawn. Other implementations, free or commercially supported, are
now available for a wide variety of systems.

The MPI one-sided operations are less mature. Many implementations now
support at least the “active target” model (these correspond to the BSP or
put-get followed by barrier). In some cases, while the implementation of these
operations is correct, the performance may not be as good as MPI’s point-to-
point operations. Other implementations have achieved good results, even on
clusters with no special hardware to support one-sided operations [74]. Recent
work exploiting the abilities of emerging network standards such as Infiniband
shows how the MPI one-sided operations can provide excellent performance
[41].

Parallel Programming Models 19

2.5 Summary

MPI provides a mature, capable, and efficient programming model for parallel
computation. A large number of applications, libraries, and tools are available
that make use of MPI. MPI applications can be developed on a laptop or
desktop, tested on an ad hoc cluster of workstations or PCs, and then run
in production on the world’s largest parallel computers. Because MPI was
designed to support “programming in the large,” many libraries written with
MPI are available, simplifying the task of building many parallel programs.
MPI is also general and flexible; any parallel algorithm can be expressed in
MPI. These and other reasons for the success of MPI are discussed in more
detail in [30].

3 Shared-Memory Programming with OpenMP

Shared-memory programming on multiprocessor systems has been around for
a long time. The typical generic architectural schematic for a shared-memory
system or an individual SMP node in a distributed-memory system is shown
in Figure 3. The memory of the system is directly accessible by all processors,
but that access may be coupled by different bandwidth and latency mecha-
nisms. The latter situation is often refered to as non-uniform memory access
(NUMA). For optimal performance, parallel algorithms must take this into
account.

The vendor community offers a huge number of shared-memory-based
hardware systems, ranging from dual-processor systems to very large (e.g.,
512-processor) systems. Many clusters are built from these shared-memory
nodes, with two or four processors being common and a few now using 8-way
systems. The relatively new AMD Opteron systems will be generally avail-
able in 8-way configurations within the coming year. More integrated parallel
supercomputer systems such as the IBM SP have 16- or 32-way nodes.

Programming in shared memory can be done in a number of ways, some
based on threads, others on processes. The main difference, by default, is
that threads share the same process construct and memory, whereas multi-
ple processes do not share memory. Message passing is a multiple process
based programming model. Overall, thread-based models have some advan-
tages. Creating an additional thread of execution is usually faster than creat-
ing another process, and synchronization and context switches among threads
are faster than among processes. Shared-memory programming is in general
incremental; a given section of code can be parallelized without modifying
external data storage or data access mechanisms.

Many vendors have their own shared-memory programming models. Most
offer System V interprocess communication (IPC) mechanisms, which include
shared-memory segments and semaphores [31]. System V IPC usually shares
memory segments among different processes. The Posix standard [40, 57] offers

20 Kendall et al.

a specific threads model called Pthreads. It has a generic interface that makes
it more suitable for systems-level programming than for high-performance
computing applications. Only one compiler (as far as we know) supports the
Fortran Pthreads standard; C/C++ support is commonplace in Unix; and
there is a one-to-one mapping of the Pthreads API to the Windows threads
API as well, so the latter is a common shared-memory programming model
available to the development community. Java threads also provides a mech-
anism for shared-memory concurrent programming [39].

Many other thread-based programming libraries are available from the
research community as well, for example, TreadMarks [43]. These libraries
are supported across a wide variety of platforms principally by the library
development teams. OpenMP, on the other hand, is a shared-memory, thread-
based programming model or API supported by the vendor community. Most
commercial compilers available for Linux provide OpenMP support.

Overall, thread-based models have some advantages. Creating an addi-
tional thread of execution is usually faster than creating another process.
Synchronization and context switches among threads are faster than among
processes.

In the remainder of this section, we focus on the OpenMP programing
model.

3.1 OpenMP History

OpenMP [12, 15] was organized in 1997 by the OpenMP Architecture Review
Board (ARB), which owns the copyright on the specifications and manages
the standard development. The ARB is composed primarily of representatives
from the vendor community; membership is open to corporate, research, or
academic institutions, not to individuals [64]. The goal of the original effort
was to provide a shared-memory programming standard that combined the
best practices of the vendor community offerings and some specifications that
were a part of previous standardization efforts of the Parallel Computing
Forum [49, 24] and the ANSI X3H5 [75] committee.

The ARB keeps the standard relevant by expanding the standard to meet
needs and requirements of the user and development communities. The ARB
also works to increase the impact of OpenMP and interprets the standard
for the community as questions arise. The currently available version 2 stan-
dards for C/C++ [5] and Fortran [4] can be downloaded from the OpenMP
ARB Web site [64]. The ARB has combined these standards into one working
specification (version 2.5) for all languages, clarifying previous inconsisten-
cies and strengthening the overall standard. The merged draft was released in
November, 2004.

3.2 The OpenMP Model

OpenMP uses an execution model of fork and join (see Figure 11) in which
the “master” thread executes sequentially until it reaches instructions that

Parallel Programming Models 21

essentially ask the runtime system for additional threads to do concurrent
work. Once the concurrent scope of execution has completed, these extra
threads simply go away, and the master thread continues execution serially.
The details of the underlying threads of execution are compiler dependent
and system dependent. In fact, some OpenMP implementations are developed
on top of Pthreads. OpenMP uses a set of compiler directives, environment
variables, and library functions to construct parallel algorithms within an
application code. OpenMP is relatively easy to use and affords the ability to
do incremental parallelism within an existing software package.

Fig. 11. Fork-and-join model of executing threads.

OpenMP uses a variety of mechanisms to construct parallel algorithms
within an application code. These are a set of compiler directives, environ-
ment variables, and library functions. OpenMP is essentially an implicit par-
allelization method that works with standard C/C++ or Fortran. Various
mechanisms are available for dividing work among executing threads, ranging
from automatic parallelism provided by some compiler infrastructures to the
ability to explicitly schedule work based on the thread ID of the executing
threads. Library calls provide mechanisms to determine the thread ID and
number of participating threads in the current scope of execution. There are
also mechanisms to execute code on a single thread atomically in order to
protect execution of critical sections of code. The final application becomes
a series of sequential and parallel regions, for instance connected segments of
the single serial-parallel-serial segment as shown in Figure 12.

Using OpenMP in essence involves three basic parallel constructs:

22 Kendall et al.

1. Expression of the algorithmic parallelism or controlling the flow of the
code

2. Constructs for sharing data among threads or the specific communication
mechanism involved

3. Synchronization constructs for coordinating the interactions among threads

These three basic constructs, in their functional scope, are similar to those
used in MPI or any other parallel programming model.

Fig. 12. An OpenMP application using the fork-and-join model of executing threads
has multiple concurrent teams of threads.

Parallel Programming Models 23

OpenMP directives are used to define blocks of code that can be executed
in parallel. The blocks of code are defined by the formal block structure in
C/C++ and by comments in Fortran; both the beginning and end of the
block of code must be identified. There are three kinds of OpenMP directives:
parallel constructs, work-sharing constructs within a parallel construct, and
combined parallel-work-sharing constructs.

Communication is done entirely in the shared-memory space of the pro-
cess containing threads. Each thread has a unique stack pointer and program
counter to control execution in that thread. By default, all variables are shared
among threads in the scope of the process containing the threads. Variables
in each thread are either shared or private. Special variables, such as reduc-
tion variables, have both a shared scope and a private scope that changes at
the boundaries of a parallel region. Synchronization constructs include mu-
tual exclusions that control access to shared variables or specific functionality
(e.g., regions of code). There are also explicit and implied barriers, the lat-
ter being one of the subtleties of OpenMP. In parallel algorithms, there must
be a communication of critical information among the concurrent execution
entities (threads or processes). In OpenMP, nearly all of this communication
is handled by the compiler. For example, a parallel algorithm has to know
the number of entities participating in the concurrent execution and how to
identify the appropriate portion of the entire computation for each entity.
This maps directly to a process-count- and process-identifier-based algorithm
in MPI.

A simple example is in order to whet the appetite for the details to come.
In the code segments in Figure 13 we have a “Hello World”-like program
that uses OpenMP. This generic program uses a simple parallel region that

C code Fortran Code

#include <stdio.h> program hello

#include <omp.h> implicit none

int main(int argc, char *argv[]) integer tid

{ integer omp_get_thread_num

int tid; external omp_get_thread_num

#pragma omp parallel private(tid) !$omp parallel private(tid)

{ tid = omp_get_thread_num()

tid = omp_get_thread_num(); write(6,’(1x,a1,i4,a1)’)

printf("<%d>\n",tid); & ’<’,tid,’>’

} !$omp end parallel

} end

Fig. 13. “Hello World” OpenMP code.

designates the block of code to be executed by all threads. The C code uses
the language standard braces to identify the block; the Fortran code uses
comments to identify the beginning and end of the parallel region. In both

24 Kendall et al.

codes the OpenMP library function omp get thread num returns the thread
number, or ID, of the calling thread; the result is an integer value ranging
from 0 to the number of threads minus 1. Note that type information for
the OpenMP library function function does not follow the default variable
type scoping in Fortran. To run this program, one would execute the binary
like any other binary. To control the number of threads used, one would set
the environment variable OMP NUM THREADS to the desired value. What output
should be expected from this code? Table 2 shows the results of five runs with
the number of threads set to 3. The output from this simple example illustrates

Table 2. Multiple runs of the OpenMP “Hello World” program. Each column rep-
resents the output of a single run of the application on 3 threads.

Run 1 Run 2 Run 3 Run 4 Run 5

<0> <2> <1> <0> <0>
<1> <1> <0> <1> <1>
<2> <0> <2> <2> <2>

an important point about thread-based parallel programs, in OpenMP or any
other thread model: There is no control over which thread executes first within
the context of a parallel region. This decision is determined by the runtime
system. Any expectation or required ordering of the execution of threads must
be explicitly coded. The simple concurrency afforded by OpenMP requires
that each task, such as a single iteration of a loop, be an independent execution
construct.

One of the advantages of OpenMP is incremental parallelization—the abil-
ity to parallelize loops at a time or even small segments of code at a time. By
iteratively identifying the most time-consuming components of an application
and then parallelizing those components, one eventually gets a fully paral-
lelized application. Any programming model requires a significant amount of
testing and code restructuring to get optimal performance.8 Although the
mechanisms of OpenMP are straightforward and easier than other parallel
programming models, the cycle of restructuring and testing is still important.
The programmer may introduce a bug by incorrectly parallelizing a code and
introducing a dependency that goes undetected because the code was not then
thoroughly tested. One should remember that the OpenMP user has no con-
trol on the order of thread execution; a few tests may detect a dependency—or
may not. In other words the tests you run may just get “lucky” and give the
correct results. We discuss dependency analysis further in Section 3.4.

8Some parallel software developers call parallelizing a code re-bugging a code,
and this is often an apropos statement.

Parallel Programming Models 25

3.3 OpenMP Directives

The mechanics of parallelization with OpenMP are relatively straightforward.
The first step is to insert compiler directives into the source code identifying
the code segments or loops to be parallelized. Table 3 shows the sentinel syn-
tax of a general directive for OpenMP in the supported languages [5, 4]. The

Table 3. General sentinel syntax of OpenMP directives.

Language Syntax

Fortran 77 *$omp directive [options]
C$omp directive [options]
!$omp directive [options]

Fortran 90/95 !$omp directive [options]

Continuation !$omp directive [options]
Syntax !$omp+ directive [options]

C or C++ #pragma omp directive [options]

Continuation #pragma omp directive [options] \
Syntax directive [options]

easiest way to learn how to develop OpenMP applications is through exam-
ples. We start with a simple algorithm, computing the norm of the difference
of two vectors. This is a common way to compare vectors or matrices that are
supposed to be the same. The serial code fragment in C and Fortran is shown
in Figure 14. This simple example exposes some of the concepts needed to

C code fragment Fortran code fragment

norm = (double) 0.0; norm = 0.0d00

for(i=0;i<len;i++) { do i = 1,len

diff = z[i]-zp[i]; diff = z(i) - zp(i)

norm += diff*diff; norm = norm + diff*diff

} enddo

Fig. 14. “Norm of vector difference” serial code.

appropriately parallelize a loop with OpenMP. By thinking about executing
each iteration of the loop independently, we can see several issues with respect
to reading from and writing to memory locations. First, we have to under-
stand that each iteration of the loop essentially needs a separate diff memory
location. Since diff for each iteration is unique and different iterations are

26 Kendall et al.

being executed concurrently on multiple threads, diff cannot be shared. Sec-
ond, with all threads writing to norm, we have to ensure that all values are
appropriately added to the memory location. This process can be handled in
two ways: We can protect the summation into norm by a critical section (an
atomic operation), or we can use a reduction clause to sum a thread local
version of norm into the final value of norm in the master thread. Third, all
threads of execution have to read the values of the vectors involved and the
length of the vectors.

Now that we understand the “data” movement in the loop, we can apply
directives to make the movement appropriate. Figure 15 contains the paral-
lelized code using OpenMP with a critical section. We have identified i as
private so that only one thread will execute a given value of i; each iteration
is executed only once. Also private is diff because each thread of execution
must have a specific memory location to store the difference; if diff were
not private, the overlapped execution of multiple threads would not guaran-
tee the appropriate value when it is read in the norm summation step. The
“atomic” directive allows only one thread at a time to do the summation of
norm, thereby ensuring that the correct values are summed into the shared
variable. This is important because summation involves the data load, register
operations, and data store. If this were not protected, multiple threads could
overlap these operations. For example, thread 1 could load a value of norm,
thread 2 could store an updated value of norm, and then thread 1 would have
the wrong value of norm for the summation.

C code fragment

norm = (double) 0.0;

#pragma omp parallel for private(i,diff) shared(len,z,zp,norm)

for(i=0;i<len;i++) {

diff = z[i]-zp[i];

#pragma omp atomic

norm += diff*diff;

}

Fortran code fragment

norm = 0.0d00

!$OMP PARALLEL DO PRIVATE(i,diff) SHARED(len,z,zp,norm)

do i = 1,len

diff = z(i) - zp(i)

!$OMP ATOMIC

norm = norm + diff*diff

enddo

!$OMP END PARALLEL DO

Fig. 15. “Norm of vector difference” OpenMP code with a critical section.

Parallel Programming Models 27

Since all the threads have to execute the norm summation line atomically,
there clearly will be contention for access to update the value of norm. This
overhead, waiting in line to update the value, will severely limit the overall
performance and scalability of the parallel loop.9 A better approach would be
to have each thread sum into a private variable and then use the partial sums
in each thread to compute the total norm value. This is what is done with
a reduction clause. The variable in a reduction clause is private during the
execution of the concurrent threads, and the value in each thread is reduced
over the given operation and returned to the master thread just as a shared
variable operates. This dual nature provides a mechanism to parallelize the
algorithm without the need for the atomic operation as in Figure 16. This
eliminates the thread contention of the atomic operation.

C code fragment

norm = (double) 0.0;

#pragma omp parallel for private(i,diff) shared(len,z,zp,norm) \

reduction(+:norm)

for(i=0;i<len;i++) {

diff = z[i]-zp[i];

norm += diff*diff;

}

Fortran code fragment

norm = 0.0d00

!$OMP PARALLEL DO PRIVATE(i,diff) SHARED(len,z,zp,norm)

!$OMP+ REDUCTION(+:norm)

do i = 1,len

diff = z(i) - zp(i)

norm = norm + diff*diff

enddo

!$OMP END PARALLEL DO

Fig. 16. “Norm of vector difference” OpenMP code with a reduction.

The reduction mechanism is a useful technique, and another example of the
use of the reduction clause is in order. In developing parallel algorithms, one
often measures their performance by timing the event in each execution entity,
either in each thread or in each process. Knowing the minimum, maximum,
and average time of concurrent tasks will give some indication of the level
of load balance in the algorithm. If the minimum, maximum, and average
times are all about the same, then the algorithm has good load-balance. If
the minimum, maximum, or both are far away from the average then there is
a load imbalance that has to be mitigated. This can be accomplished by some

9In fact, this simple example will not scale well regardless of the OpenMP mech-
anism used because the amount of work in each thread compared to the overhead
of the parallelization is small.

28 Kendall et al.

sort of regrouping of elements of each task or via some dynamic mechanism.
As a specific example, we will show code fragment for a sparse matrix vector
multiplication in Figure 17. The sparse matrix is stored in the compressed-
row-storage (CRS) format, a standard format that many sparse codes use in
their algorithms. See [68] for details of various sparse matrix formats.

! compute yvec = Amat*xvec

! Amat sparse matrix stored in CRS format

! Flat linear storage of elements of A

! row_ptr() points to the start and of each row of A

! in the flat linear storage of A. The last element

! has the number of non-zero elements of A + 1.

! Therefore each row has row_ptr(i+1)-row_ptr(i)-1

! elements

! col_ind() provides the column index for each element of A

!

do i = 1,n

!

! compute the inner product of row i with vector xvec

!

t = 0.0d0

do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))

enddo

!

! store result in yvec(i)

!

yvec(i) = t

enddo

Fig. 17. Sequential sparse matrix multiply code fragment, in Fortran.

To parallelize this loop using OpenMP, we have to determine the data
flow in the algorithm. We will parallelize this code over the outer loop, i.
Each iteration of that loop will be executed only once across all threads in the
team. Each iteration is independent, so writing to yvec(i) is independent in
each iteration. Therefore, we do not have to protect that write with an atomic
directive as we did in the “norm” computation example. Hence, yvec needs
to be shared because each thread will write to some part of the vector. The
temporary summation variable t and the inner do loop variable k are different
for each iteration of i. Thus, they must be private; that is, each thread must
have a separate memory location. All other variables are only being read, so
these variables are shared because all threads have to know all the values.

Figure 18 shows the parallelized code fragment. Timing mechanisms are in-
serted for the do loop and the reduction clause is inserted for each of the reduc-
tion variables, timemin, timemax, and timeave. The OpenMP library func-

Parallel Programming Models 29

! compute yvec = Amat*xvec

...

!$OMP PARALLEL REGION PRIVATE(i,t,k,timestart,timeend,numthread)

!$OMP+ SHARED(n,row_ptr,amat,xvec,col_ind,yvec)

!$OMP+ REDUCTION(MIN:timemin) REDUCTION(MAX:timemax)

!$OMP+ REDUCTION(+:timeave)

timestart = omp_get_wtime()

!$OMP PARALLEL DO

do i = 1,n

t = 0.0d0 ! inner product of row i with vector xvec

do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))

enddo

yvec(i) = t ! store result in yvec(i)

enddo

!$OMP END PARALLEL DO

timeend = omp_get_wtime()

numthread = omp_get_num_threads()

timemin = timeend-timestart

timemax = timeend-timestart

timeave = (timeend-timestart)/numthread

!$OMP END PARALLEL REGION

Fig. 18. Parallel sparse matrix multiply code fragment, in Fortran, that times the
operation and reduces the minimum, maximum, and average times.

tion omp get wtime() returns a double-precision clock tick based on some im-
plementation dependent epoch. The library function omp get num threads()
returns the total number of threads in the team of the parallel region. The
defaults are used for scheduling the iterations of the i loop across the threads.
In other words, approximately n/numthread iterations are assigned to each
thread in the team. Thread 0 will have iterations i = 1, 2, . . .,n/numthread,
thread 1 will have i = n/numthread + 1, . . ., 2*n/numthread, and so on. Any
remainder in n/numthread is assigned to the team of threads via a mechanism
determined by the OpenMP implementation.

Our example of a parallelized sparse matrix multiply where we determine
the minimum, maximum, and average times of execution could show some
measure of load-imbalance. Each row of the sparse matrix has a different
number of elements. If the sparse matrix has a dense block banding a portion
of the diagonal and mostly diagonal elements elsewhere there will be a larger
“load” on the thread that computes the components from the dense block.
Figure 19 shows the representation of such a matrix and how it would be split
by using the default OpenMP scheduling mechanisms with three threads.
With the “static” distribution of work among the team of three threads, a
severe load imbalance will result. This problem can be mitigated in several
ways. One way would be to apply a chunk size in the static distribution of

30 Kendall et al.

Fig. 19. A sparse matrix that is dense in one area. Using our sparse matrix vector
algorithm on three threads, we would access the matrix as shown.

Fig. 20. A sparse matrix that is dense in one area. Using our sparse matrix vector
algorithm with the appropriate chunk size on three threads we would access the ma-
trix as shown. This is more load-balanced than the default distribution of iterations
to the team of threads.

Parallel Programming Models 31

work equal to the size of the dense block divided by the number of threads.
This would lead to the distribution of work shown in Figure 20. This can be
accomplished by modifying the PARALLEL DO directive of Figure 18 to

!$OMP PARALLEL DO SCHEDULE(STATIC,(SIZE_OF_DENSE_BLOCK/numthreads))

where SIZE OF DENSE BLOCK must be determined before the do loop construct
in the parallel region. Determining this value is added overhead on the paral-
lelization of the serial code.

At times, more explicit control may be necessary. The same kind of explicit
control necessary in the equivalent message-passing implementation. The algo-
rithm can be scheduled explicitly with similar constructs such as the number
of threads and the thread identifier. This is another advantage of OpenMP;
in addition to incremental parallelization, a programmer can take as much
explicit control as is necessary for a given algorithm.

Figure 21 shows an explicit parallelization of the sparse matrix multi-
ply. The OpenMP library function omp get thread num() returns the thread
identifier in the range from 0 . . . the number of threads minus 1. Each thread
starts with the iteration that matches a thread identifier, and the “parallel”
loop now increments by the number of threads. There is no longer a need
for the PARALLEL DO directive because of the explicit control! This interleaves
each iteration in order to a different thread, so the issues of load balance are
minimized.

The C/C++ version of the example in Figure 21 would be more com-
plicated because the reduction clause operators available in C/C++ do not
include MIN or MAX functionality. No intrinsic functions are available for use
in the reduction clause.

3.4 Data Dependencies and False Sharing

In parallelizing algorithms, one has to ensure that every memory write opera-
tion is essentially independent of other memory operations from other threads
in the team. If the programmer writes to a location in one thread and reads
that same location in another thread of execution, a dependency exists. Since
OpenMP provides no control over which thread executes, the programmer
must deal with this dependency either by scoping the appropriate variables
(private or shared) or introducing synchronization mechanisms to ensure that
the dependency is met. Mitigating these data race conditions or dependencies
is at the heart of shared-memory parallel programming, since data commu-
nication is through shared variables. Chandra et al. have a good, somewhat
formal, discussion of the process of identifying and removing these dependen-
cies [9].

The mechanisms for dealing with these data dependencies often require
some restructuring of code. For example, it may be necessary to split a loop
that computes multiple quantities. The “fissioned” loops can be run in par-
allel but the original construct cannot. In other situations new intermediate

32 Kendall et al.

! compute yvec = Amat*xvec

...

!$OMP PARALLEL REGION PRIVATE(i,t,k,timestart,timeend,numthread,tid)

!$OMP+ SHARED(n,row_ptr,amat,xvec,col_ind,yvec)

!$OMP+ REDUCTION(MIN:timemin) REDUCTION(MAX:timemax)

!$OMP+ REDUCTION(+:timeave)

timestart = omp_get_wtime()

tid = omp_get_thread_num() ! get the thread identifier

numthread = omp_get_num_threads()

do i = (tid+1),n,numthread

t = 0.0d0 ! inner product of row i with vector xvec

do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))

enddo

yvec(i) = t ! store result in yvec(i)

enddo

timeend = omp_get_wtime()

timemin = timeend-timestart

timemax = timeend-timestart

timeave = (timeend-timestart)/numthread

!$OMP END PARALLEL REGION

Fig. 21. Parallel sparse matrix-multiply code fragment, in Fortran, that times the
operation and reduces the minimum, maximum, and average times. The concurrency
is explicitly controlled with the thread identifier and the number of threads.

quantities may need to be introduced. These will add additional memory re-
quirements and the overhead of generating those intermediates.

Code restructuring will certainly involve tradeoffs that may affect perfor-
mance and thus force a specific way of parallelizing the algorithm. One such
performance issue is that, although there is no formal data dependency, there
is a performance degradation because of the nature of the memory locations
being accessed by the threads in the team. If independent threads are writing
to memory locations in the same cache line, there is no true data dependency
because each thread is writing to separate memory locations. Unfortunately,
since these locations are in the same cache line, performance is degraded be-
cause each write forces the data to be flushed from the other processor cache.
This cache thrashing is called “false sharing.”

Can “false sharing” really impact the performance of a parallel algorithm?
Yes. In fact, the algorithm presented in Figure 21 will suffer from false sharing.
The write to yvec(i) in the first iteration of each thread all have elements
contiguous in memory; e.g., thread 0 and thread 1 will interact via the cache.
As the algorithm proceeds the effect may decrease because of the varying size
of the number of elements in each row of the matrix; each iteration will take
a different time to execute. One way to mitigate this is to block the access

Parallel Programming Models 33

! compute yvec = Amat*xvec

...

blocksize = 5 ! the number of iterations each thread gets

numblocks = n/blocksize ! number of blocks of iterations

! a remainder means extra block

if (mod(n,blocksize).ne.0) numblocks=numblocks+1

!$OMP PARALLEL REGION PRIVATE(ii,i,ilo,ihi,t,k)

!$OMP+ PRIVATE(timestart,timeend,numthread,tid)

!$OMP+ SHARED(n,row_ptr,amat,xvec,col_ind,yvec)

!$OMP+ SHARED(blocksize,numblocks)

!$OMP+ REDUCTION(MIN:timemin) REDUCTION(MAX:timemax)

!$OMP+ REDUCTION(+:timeave)

timestart = omp_get_wtime()

tid = omp_get_thread_num() ! get the thread identifier

numthread = omp_get_num_threads()

do ii = (tid+1),numblocks,numthread

ilo = (ii-1)*blocksize + 1 ! start of each block

ihi = min((ilo+blocksize-1),n)

do i = ilo,ihi

t = 0.0d0 ! inner product of row i with vector xvec

do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))

enddo

yvec(i) = t ! store result in yvec(i)

enddo

enddo

timeend = omp_get_wtime()

timemin = timeend-timestart

timemax = timeend-timestart

timeave = (timeend-timestart)/numthread

!$OMP END PARALLEL REGION

Fig. 22. Parallel sparse matrix multiply code fragment, in Fortran, that times the
operation and reduces the minimum, maximum, and average times. The concurrency
is explicitly controlled with the thread identifier and the number of threads and
appropriate blocking of the parallelized iterations to avoid false sharing.

to the iterations and thus the writes to yvec(i). The block size simply has
to be large enough to ensure that the writes to yvec(i) in each thread will
not be in the same cache line. Figure 22 shows the blocked algorithm that
will avoid false sharing using explicit control of the concurrency among the
team of threads. This explicit blocking could be accomplished by modifying
the PARALLEL DO directive of Figure 18 to

!$OMP PARALLEL DO SCHEDULE(STATIC,5)

34 Kendall et al.

Other mechanisms can be used to modify the way iterations are scheduled.
They are explored in more detail in references [9, 4, 5].

As another example for analysis and parallelization, we examine the simple
cache-optimized matrix multiply in Figure 23. Our examination of this code

do j = 1, CCOLS

do k = 1, BROWS

Btmp = B(k,j)

do i = 1, CROWS

C(i,j) = C(i,j) + A(i,k)*Btmp

enddo

enddo

enddo

Fig. 23. Partially cache-optimized matrix-multiply: serial code.

suggests that we should maximize the work in each thread with respect to the
overhead of the OpenMP parallelization constructs. In particular, we should
parallelize the outermost loop. A glance at the memory locations with write
operations indicates that only C(i,j), Btmp, i, j, and k are relevant. For
effective parallelization, the loop index variables must be different for each
thread, thus accessing only appropriate parts of the matrix. A and B have
only read operations. Since all threads need to know the dimensions of the
matrices, CCOLS, CROWS, and BROWS need to be shared among team members.
Since we are parallelizing over the j loop, each thread has a unique set of j
values; and since Btmp is a function of j, each thread should have a unique
Btmp (i.e., Btmp should be private to each thread).

This loop structure can be parallelized in many ways. The most straight-
forward is to use the combined parallel work sharing DO constructs. The
parallel code based on our analysis is shown in Figure 24. The data in Table

!$OMP PARALLEL DO PRIVATE(i,j,k,Btmp)

do j = 1, CCOLS

do k = 1, BROWS

Btmp = B(k,j)

do i = 1, CROWS

C(i,j) = C(i,j) + A(i,k)*Btmp

enddo

enddo

enddo

!$OMP END PARALLEL DO

Fig. 24. Partially cache-optimized matrix-multiply: parallel code.

4 shows the performance on a four-processor SMP system. The scalability

Parallel Programming Models 35

indicates some overhead. On four threads the efficiency ranges from 97.1% to
95.4% with increasing matrix sizes. The performance could be improved by
further optimizing the cache with a blocking algorithm.

Table 4. Timings in seconds for multiple runs of the OpenMP parallelized matrix
multiply code.

Matrix Rank

number of threads 500 1000 1500 2000

4 0.43 3.56 12.05 28.37
3 0.57 4.65 15.67 37.05
2 0.84 6.92 23.28 55.12
1 1.67 13.57 45.87 108.27

3.5 Future of OpenMP

We have described in this section a robust programming model for the devel-
opment of applications using OpenMP on shared-memory systems. There are
many ways to tackle a parallel algorithm, from the application of simple direc-
tives to essentially full control basing the execution on the thread identifiers
available. At this point we have described both message passing with MPI
and thread programming with OpenMP. Some applications use both, with
mixed results [16, 42, 56]. Hybrid MPI/OpenMP applications are emerging
in part due to the nature of how clusters are evolving with larger processor
counts per node. Hybrid MPI/OpenMP software development presents sev-
eral challenges. The programmer interested in this hybrid model should get a
sound understanding of both programming models separately and then begin
to merge them. The programmer interested in this should carefully under-
stand the MPI-2 scope of thread policy set up in the initialization phase of
MPI-2 codes. The real trick in merging these two programming models is get-
ting the code to work in four different modes: serially, with just OpenMP,
with just MPI, and with both MPI and OpenMP [37]. The hybrid code in
any of these modes should generate correct results regardless of how many
threads are used at the thread level or how data is distributed among multi-
ple processes. Current hybrid applications have been developed with a subset
of these four modes due to the complexity of the resultant application. Pri-
marily MPI communications are done only in the master thread of execution.
Hybrid applications is an advanced topic in programming models and more
research is in progress addressing the issues involved.

Cluster-Based OpenMP

At a recent workshop, Intel described a new offering, Cluster OpenMP [36],
that is in beta testing. The idea is to provide a runtime infrastructure that

36 Kendall et al.

allows the OpenMP programming model to run on clusters. Intel’s offering can
serve as a reference implementation for this idea, but it is limited to Itanium
clusters at the moment. Intel has added directives and library functions to
make clear distinctions between private, shared, and “sharable” data (data
that is among processes, i.e., on another cluster node). Cluster-based OpenMP
is a current topic in the research community and should be monitored as the
research efforts demonstrate the effectiveness [63, 38, 52].

The ultimate goal of these efforts is to have the runtime environment pro-
vide good performance on clusters for OpenMP; comparable performance to
hybrid MPI and OpenMP is required. The programming syntax of the value-
added standard would allow incremental parallelism that is often difficult with
MPI code development. Many issues must be considered in this environment.
Remote process invocation is an issue that will be of interest because the
landscape of clusters and communication interconnects is vast.

Specifications 2.5 and 3.0

Currently the merged OpenMP 2.5 specification is completed and is available
for public comment.10 A major change in the OpenMP 2.5 specification is
the merger of the Fortran and C/C++ specifications into a single document
[6]. The ARB is also resolving inconsistencies in the specifications, expanding
the glossary, improving the examples, and resolving some of the more difficult
issues with respect to the flush semantics and the persistence of threadprivate
data across multiple parallel regions.

The 3.0 specification is on hold until the 2.5 merger is done, but several
topics are under discussion to expand the applicability of OpenMP. These in-
clude task parallelism to handle while loops and recursion, automatic scoping
of variables, interaction with other thread models (e.g., POSIX threads), more
control or definition of the memory model for NUMA-style shared-memory
systems, and expanded schedule types and reusable schedules. As an example
of the importance of the last issue, the guided schedule gives an exponen-
tial decay of the chunk size of iterations for a loop construct. The ability to
control or change the decay rate is useful for improved performance of some
algorithms. The 3.0 specification will also address many of the issues of nested
parallelism that is in several implementations now. One major issue that needs
to be considered is error reporting to the application. What happens if no more
threads/resources are available? Currently, most implementations simply se-
rialize the construct. A code developer may want to switch algorithms based
on the runtime environment.

3.6 Availability of OpenMP

Most vendors provide OpenMP compilers, and several open source implemen-
tations are available. The OpenMP Web site [64] provides more information

10See the http://www.openmp.org website.

Parallel Programming Models 37

regarding their availability and function. There are also pointers for open-
source implementations.

4 Distributed Shared-Memory Programming Models

Distributed shared-memory (DSM) programming models use a physically dis-
tributed memory architecture with some aspect of shared-memory technology.
DSM models are not as popular as message-passing or direct shared-memory
models but have many of the complications of both.

The goal for DSM technology is to facilitate the use of aggregate system
memory, the most costly component of most high-end systems. Stated differ-
ently, most DSM programming models want to provide shared-memory-like
programming models for distributed-memory systems. This aspect of shared
memory can be effected in hardware or software. The hardware mechanisms
are those with the highest performance and cost. Software mechanisms range
from those that are transparent to the user to those coded explicitly by the
user. Since obvious latencies exist in the software stacks of these implementa-
tions, performance still depends on the skill of the programmers using these
technologies. DSM models are not as popular as message passing or direct
shared-memory models but have many of the complications of both.

Software DSMs fall basically into three categories:

• Transparent operating system technology
• Language-supported infrastructure
• Variable/array/object-based libraries

DSMs that are transparent to the user often use a virtual-memory system
with kernel modifications to allow for inter-node page accesses. This approach
makes the programming straightforward in function, but getting good per-
formance requires understanding the locality of the data and the way data
movement happens. These systems include technologies such as ThreadMarks
[43], InterWeave [10], Munin [8], and Cashmere [19].

Language-based infrastructure includes specialty languages such as High
Performance Fortran (see section 4.1) and one that is now getting vendor
support, Unified Parallel C (see Section 5.1).

Data-specific DSM libraries have been those most used by the high-
performance computing community. They include the popular SHMEM pro-
gramming model available on the Cray T3D and T3E systems[3]. These DSMs
require that the programmer identify variables or objects that are shared, un-
like OpenMP where everything is shared by default. Operations that separate
shared and local variables require programmer control of the consistency ap-
propriate for the algorithm. Data movement is neither automatic nor trans-
parent; it must be coded explicitly or understood via implicit data movement
from library interfaces.

38 Kendall et al.

4.1 High Performance Fortran

High Performance Fortran (HPF) is a distributed-memory version of Fortran
90 that, like OpenMP, relies on the use of directives to describe the features
that support parallel programming. Because HPF uses directives, most HPF
programs may be compiled by any Fortran 90 compiler and run on a single
processor. HPF was developed by an informal group and published as a stan-
dard [33] in much the same way as MPI. In fact, the MPI Forum followed the
same procedures used by the HPF Forum.

HPF is not as widely available as MPI and OpenMP but is still in use.
A slight extension of HPF is in use on the Earth Simulator; an application
using that version of HPF achieved a performance of 14.9 Teraflops and was
awarded a Gordon Bell prize in 2002 [69]. In this section, we will touch on a
few of the features of HPF and give one example. More information and some
examples may be found in [17]; the full HPF standard is also available [48].

One of the most important steps in implementing a parallel program is
distributing the data across the processes. This step can often be burdensome
and error prone. HPF provides several directives that allow the programmer to
easily and efficiently describe many data distributions. The most important of
these is the distribute directive. For example, to distribute an array across
all processes in blocks, use

real a(100)
!HPF$ DISTRIBUTE(BLOCK) a

Note that the HPF directive is a comment because it begins with an exclama-
tion point and will be ignored by Fortran 90 compilers that do not support
HPF. HPF supports several styles of data decomposition, including BLOCK
(contiguous groups of elements across processes) and CYCLIC (round-robin as-
signment of elements across processes). One of the most attractive features
of HPF is that the programmer may change the data distribution by chang-
ing only the DISTRIBUTE directive; the HPF compiler takes care of all of the
changes to the code that are required by a different distribution.

The other important directive for data decomposition is the ALIGN direc-
tive. This tells the HPF compiler to align one distributed array with another.
This lets the programmer provide information about the relationship between
the use of elements of different distributed arrays to the compiler, which can
be used by the compiler to produce more efficient code.

HPF provides additional directives; for example, there is a way to spec-
ify that a variable is involved in a reduction operation. Figure 25 shows a
simple matrix-matrix multiply example. Note that, unlike the MPI case, pro-
gram declares the sizes of the arrays, not just the part that is on a particular
process. The HPF compiler handles all of the details of the data decomposi-
tion, including determining the sizes of the local versions of the arrays. This
example does not include any of the code that would normally be used to
implement cache and register blocking; such changes are necessary to achieve
high performance.

Parallel Programming Models 39

program matmult

integer, parameter :: n=1000

real a(n,n), b(n,n), c(n,n)

!HPF$ DISTRIBUTE(BLOCK,BLOCK)::C

!HPF$ ALIGN A(i,*) WITH C(i,*)

!HPF$ ALIGN B(*,j) WITH C(*,j)

!

a = 1

b = 2

do i=1,n

do j=1,n

c(i,j) = dot_product(a(i,:),b(:,j))

enddo

enddo

write (*,*) c

end

Fig. 25. Simple HPF matrix multiply program.

4.2 SHMEM

SHMEM exists in implementations from various computer and interconnect
vendors[3, 45, 46, 47]. In addition, a public-domain version—a generalized
portable SHMEM, or GPSHMEM [66, 65]—has been augmented for use on
clusters. The SHMEM model is an asynchronous one-sided message-passing
or data-passing model. SHMEM assumes that computations are performed in
separate address spaces and that data is explicitly passed. The asynchronous
one-sided model assumes that a process can read (“get”) data or write (“put”)
data from or to another process’s address space without the active participa-
tion of the second process. These one-sided operations are now a component
of MPI-2 [54], and we encourage programmers to use that functionality as
opposed to SHMEM (see Section 2.3). It will, however, take time for the
functionality to propagate through all the vendor-supported MPI implemen-
tations.

SHMEM relies on remotely accessible data objects that are symmetric.
These are data objects that have a known relationship among the local and
remote addresses, such as Fortran common blocks or variables with the SAVE
attribute, data allocated with shpalloc in Fortran or shmalloc in C or C++.
SHMEM has a robust set of collective routines based on a triplet of arguments:
the starting processor, log of the stride, and the number of processors involved.
This power-of-two stride was required for the hardware of the T3D and T3E
systems, but it is not generally applicable to clusters. GPSHMEM augmented
this behavior to include arbitrary stride counts. The collective routines operate
on the same symmetric data objects in multiple processes; this a requirement
is made to improve efficiency.

40 Kendall et al.

SHMEM can be thought of as a middle ground between message passing
and a full DSM language. SHMEM supports other operations such as work-
shared broadcast and reduction, barrier synchronization, and atomic memory
operations. An atomic memory operation is an atomic read-and-update op-
eration, such as a fetch-and-increment, on a remote or local data object. Full
barriers, barriers on a subset of processes, and a locking mechanism are also
provided. There are some problems with SHMEM in that there is a name-space
explosion because the interface does not include the size of the object being
passed. For example, five different broadcast calls are available in the T3E
implementation, shmem broadcast, shmem broadcast4, shmem broadcast8,
shmem broadcast32, and shmem broadcast64. Moreover, there is no stan-
dard for SHMEM, so other vendor or open-source implementations are free to
augment the library as their needs arise. This augmentation is often via envi-
ronment variables where the default values may or may not provide optimal
performance.

4.3 Global Arrays

The Global Arrays (GA) Toolkit [59, 60, 58] was designed to offer the best
functionality of both distributed-memory and shared-memory programming
models. In fact, GA requires the use of a message-passing library so an appli-
cation can use message-passing algorithms in addition to the GA algorithms.
The data is divided into local data and logically shared data that can be ac-
cessed only through the user interface layer of the GA package. GA assumes
that the data representation is arrays of multiple dimensions. This provides a
NUMA view of the aggregate memory of the system. The data locality must
be managed explicitly by the programmer, with the knowledge that remote
data access is slower than local data access. Figure 26 represents the view
of the data structures in an GA application. The cost of remote data access
promotes data reuse and locality of reference.

Fig. 26. View of data structures in Global Arrays.

Parallel Programming Models 41

The GA toolkit allows the user complete control over the data distribution
to match any algorithmic needs. The user can have the library distribute
the data automatically or can identify a specific dimension or block size for
distribution. Complete irregular distributions are also possible. The locality
information of data is also available. For example, a specific multidimensional
patch of a GA that is required for an algorithmic computation may exist
on one or more processes; the locality information is an array of the process
identifiers.

Figure 27 shows the computational flow of a GA application. Data is ex-
tracted from “global” memory to “local” memory. The process then computes
on that portion of the array copied to local memory. The results are copied
or accumulated to global memory for further processing as the algorithm dic-
tates.

Fig. 27. Computational flow of a GA application.

Copy operations from the “global” data to “local” data and the reverse
are the fundamental functionality of GA. In addition, the locality informa-
tion provided allows direct access to data “owned” by a given process. This
arrangement allows for virtually any needed data parallel operations. Several
built-in data-parallel-like operations are provided, including zeroing an array,
filling an array with an arbitrary value, printing an array, and scaling an array
by a constant.

GA has several language interfaces: C, C++, Fortran 77, Fortran 90/95,
and Python. There is also a common component architecture (CCA) compo-
nent version. In addition, the library provides language interoperability for

42 Kendall et al.

mixed-language applications. Arrays created and used in Fortran can be ac-
cessed by using the other language interfaces. Internal storage is, by default,
that of the Fortran language but can be made either row or column major.

The library has evolved from the initial development for NWChem, a com-
putational chemistry suite [73, 44], to meet requirements of new application
areas. Ghost cells and sparse data structures were added to provide function-
ality for halo-like simulations and Grid-based codes, respectively. The data
movement engine was separated from the original implementation and now
provides a portable one-sided communication tool, the Aggregate Remote
Memory Copy Interface (ARMCI). ARMCI handles the actual data trans-
fers, synchronization operations, and memory management. GA also has a
secondary storage mechanism, disk resident arrays (DRAs). DRAs extend the
memory hierarchy one additional level; they allow for out-of-core algorithm
development as well as internal checkpointing of data. Furthermore, GA offers
interfaces to third-party libraries such as ScaLAPACK.

GA provides portable performance; it runs on most major cluster intercon-
nect technologies and high-end supercomputers. ARMCI, the data movement
engine, is tuned to the fastest mechanisms available on various platforms.
The developers have strong interactions with vendor software and hardware
engineers to keep the infrastructure current and the performance at the high-
est level. GA will continue to expand to meet the requirements of the user
community as the need arises.

To give a flavor of GA programming, we present a simple blocked matrix-
multiply routine in Figure 28. The function stores the product of two matrices
A and B in the resultant C matrix. The assumption is that the GAs for each
matrix are created and A and B are filled prior to calling the routine and that
all matrices are two dimensional.

GA provides a robust set of functionality. The toolkit is essentially the
standard programming model for electronic structure computational chem-
istry codes, where most of the manipulations are contractions of multidimen-
sional tensors of various orders into lower-order tensors. GA is also used in
image processing, financial security forecasting, computational biology, fluid
dynamics, and other areas. GA does not offer the full incremental parallelism
of OpenMP, but the functional code is straightforward to generate and then
tune for performance. Rapid prototyping is possible once the initial infras-
tructure is built. More information is provided on the Global Arrays home
page [25].

5 Future Programming Models

We present here a few examples of what we delineate as future programming
languages or models, not because they are new ideas, but because they are
just now moving from the research community to the vendor community.
Other programming languages should be considered if one is willing to live

Parallel Programming Models 43

subroutine ga_simplematmul(g_c, g_a, g_b)

implicit double precision (a-h,o-z)

! include files from the GA suite

#include "mafdecls.fh"

#include "global.fh"

c omitting declaration of variables

parameter (blocksize = 32) ! arbitrary block size

c

ga_inquire(g_a,typea,rowsa,colsa) ! get matrix dimensions

ga_inquire(g_b,typeb,rowsb,colsb)

ga_inquire(g_c,typec,rowsc,colsc)

! check that types and dimensions match if not call ga_error

call ga_zero(g_c) ! zero the result

blocksi = rowsc/blocksize + 1

blocksj = colsc/blocksize + 1

blocksk = colsa/blocksize + 1

! somehow allocate local arrays loca[blocksize][blocksize],locb,locc

! get the number of processes

nproc = ga_nnodes()

! atomically get the next task an ordered count 0, 1, ...

! across all processes

mtask = nexttask(nproc)

itask = -1

do ib = 1,blocksi

ilo = (ib-1)*blocksize + 1

ihi = min((ilo+blocksize-1),rowsc)

mdg = ihi-ilo + 1

itask = itask + 1

! parallelize over i blocks (ib variable)

if (itask.eq.mtask) then

do kb = 1,blocksk

klo = (kb-1)*blocksize + 1

khi = min((klo+blocksize-1),colsa)

kdg = khi - klo + 1

! get patch of global A copied into local array loca

ga_get(g_a,ilo,ihi,klo,khi,loca,mdg)

do jb = 1,blocksj

jlo = (jb-1)*blocksize + 1

jhi = min((jlo+blocksize-1),colsc)

ndg = jhi - jlo + 1

! get patch of global B copied into local array locb

ga_get(g_b,klo,khi,jlo,jhi,locb,kdg)

! use optimize BLAS locally to compute patch of in locc

call dgemm(’n’,’n’,mdg,ndg,kdg,1.0d00,

+ loca,mdg,locb,kdg,0.0d00,locc,mdg)

! accumulate into global array C from local locc

ga_acc(g_c,ilo,ihi,jlo,jhi,locc,mdg,1.0d00)

enddo

enddo

mtask = nexttask(nproc)

endif

enddo

end

Fig. 28. Simple GA matrix multiply routine.

44 Kendall et al.

on the “bleeding edge” of technology—that is, with very robust features of
the language and little support. Of particular note is Titanium [76], a high-
performance Java dialect with extensions needed by scientific applications. We
close this section with a view of what is next beyond near-term extrapolation
of current technology and what is needed to really reach petaflops.

5.1 Unified Parallel C

Unified Parallel C [20] (UPC) is a parallel extension of the ANSI C standard.
UPC, like Co-Array Fortran (see Section 5.2), has the advantage of extend-
ing a well-known and well-understood language for parallel computation. The
development of the UPC language started with ANSI C and included expe-
riences from various distributed parallel computing language efforts in the
research community, with input from vendors, users, and academia.

UPC is a distributed shared-memory parallel programming language. The
execution model assumes a number of threads working independently in a
single-program multiple-data (SPMD) paradigm. The language provides syn-
chronization when needed via barriers, the memory consistency model, and
explicit locks. The memory in the language is logically split into private and
shared memory with an affinity for a specific thread. Any thread can read
from the globally shared address space, and the language extension includes
identifying which data and pointers to data are “shared” among the threads.
Figure 29 represents the memory layout in the UPC model.

Fig. 29. UPC memory model with respect to the thread affinity.

The SPMD nature of the model allows for work distribution based on
the thread identifier, MYTHREAD, and the number of threads involved,
THREADS. MYTHREAD and THREADS are keywords in the UPC lan-
guage. The actual translation depends on the underlying runtime infrastruc-
ture, but that is transparent to the user from a functional point of view and
is the responsibility of the compiler.

Parallel Programming Models 45

Because threads share memory and because portions of shared memory
have affinity to specific threads, access to that memory has a sequencing
issue that depends on the underlying runtime environment. Developing a UPC
application simply requires specifying either a “strict” or a “relaxed” memory
consistency mode. This specification can be done for the entire program, for
a defined block of code, or for a specific variable or array. The “relaxed”
consistency mode allows memory accesses in each thread to follow normal
ANSI C models, ignoring access to “local” shared-memory references from
other threads. When using the relaxed mode, the programmer is ultimately
responsible for handling any synchronization necessary. The “strict” mode
follows normal ANSI C models while considering accesses from all threads.11

Locks are provided to ensure atomic access to critical sections of code and
the associated memory locations. Figure 30 shows a “Hello World” program
similar to the one presented in the OpenMP discussion.

#include <stdio.h>

#include "upc_relaxed.h"

int main(int argc, char *argv[])

{

int tid;

{

tid = MYTHREAD;

printf("<%d> of %d Threads\n",tid,THREADS);

}

}

Fig. 30. “Hello World” UPC code,

The sharing of data is explicitly coded in the use of the “shared” qualifier
or in how memory is allocated dynamically with the UPC memory allocation
routines. Since data being shared has affinity to threads, the user needs to
control how data is laid out. Both the static and the dynamic memory modes
allow for this. By default, elements of data arrays are distributed by element
in a round-robin fashion to the shared-memory region of each thread. This
can easily be blocked to distribute rows or columns of matrices to each thread.

In addition to the SPMD use of the thread identifier and the number
of threads to share work among threads, there is a work-sharing construct
upc forall. The functional form of this construct is similar to the standard
for loop construct but with an extra affinity parameter:

upc_forall (init-expr ; cond-expr; incr-expr; affinity),

where init-expr, cond-expr, and incr-expr are the ANSI C equivalent
expressions. The affinity parameter can be either a variable or an address to

11This is a simplification of the consistency model; consult the UPC specifications
[20] for more details.

46 Kendall et al.

a variable. The affinity expression controls which thread actually computes
an iteration of the loop construct. For a variable the thread that executes
the loop is MYTHREAD == variable%THREADS. For an address the thread that
executes the loop is MYTHREAD == upc threadof(address). The UPC library
function upc threadof identifies the thread that has affinity for the address
argument.

The UPC language has great potential for providing long-term portability
and performance for a wide variety of applications. We have provided only
a taste of the language. The UPC Web site12 provides many more details,
examples, and availability of compilers.

5.2 The Co-Array Fortran Extension to Fortran 95

Co-Array Fortran [62] is an alternative parallel programming language based
on an extension to Fortran 95. It uses a simple syntax that is intuitively
natural to a Fortran programmer. It adopts a purely local view of data and
computation, but it allows the programmer to make local data globally visible
by declaring some variables to be co-arrays. A co-array is a Fortran 95 object,
whether an intrinsic object or a user-defined derived type, that is declared
with a co-dimension. For example, the declaration,

real :: x[*]

defines a scalar co-array object that is replicated across program images. The
asterisk notation [*] indicates that program images are virtual images, repli-
cated copies of a program within the SPMD programming model.

The actual number of images is determined when the program starts execu-
tion. The runtime system assigns images to physical processors in a platform-
specific manner, for example, as processes or threads. The number of images
is fixed; it may be the same as the number of physical processors, it may
be greater, or it may be less. Each physical processor may be responsible for
more than one image, for example, taking work from a task queue. Conversely,
more than one physical processor may be responsible for the same image, for
example, by spawning threads within a process to share the work. The pro-
grammer decides whether an image works only on its own local data or, using
co-array syntax, works on data that it does not own, by making local copies
of data owned by other images.

Co-dimensions may be multidimensional just like normal dimensions. Pro-
grammers can use them to represent a logical decomposition of virtual images
that corresponds to a logical decomposition of a physical problem. For ex-
ample, a two-dimensional field decomposed into blocks, as commonly used in
weather, climate, and ocean codes, might be declared with two co-dimensions.

real :: field(m,n)[p,*] .

12See http://upc.gwu.edu.

Parallel Programming Models 47

In this case, each image holds a patch of the field of local size (m x n). The
asterisk notation indicates that the number of images is determined when the
program starts execution, but the programmer wants to think of the images
within a two-dimensional grid with p images in the first dimension.

For many applications that use finite difference operators to solve partial
differential equations, for example, programmers often add halo cells around
the local field data.

real :: field(0:m+1,0:n+1)[p,*]

The main communication requirement is the exchange of halo data, which,
using Co-Array Fortran syntax, can be written with just a few lines of code [7,
61]. For example, the exchange in the east-west direction

field(1:m,0) = field(1:m,n)[p,q-1]
field(1:m,n+1) = field(1:m,1)[p,q+1]

can be written with two lines of code, where the programmer has adopted the
convention that the first co-dimension represents the north-south direction
and the second represents the east-west direction. The image corresponding
to [p,q] fills its lower halo with data from its west neighbor [p,q-1] and its
upper halo with data from its east neighbor [p,q+1]. Since co-array syntax
allows an image to read or write data owned by any other image, it is the
programmer’s responsibility to provide appropriate synchronization.

Basing a parallel programming model on a simple extension to an exist-
ing language has a number of advantages. First, the programmer need not
learn a new language. Co-array syntax is natural and familiar to the Fortran
programmer. Second, the co-array extension can be implemented by using
existing compiler technology. Co-dimensions behave, in most respects, like
normal dimensions. Third, since the new parallel syntax becomes part of the
language, the programmer can use it to write customized communication pat-
terns that fit a particular problem, without being restricted solely to those
patterns provided by a library. Fourth, the compiler can generate optimized
code that takes advantage of specific features of specialized hardware on par-
ticular platforms. For example, in the halo exchange example, it can schedule
communication to overlap with computation and to exercise multiple hard-
ware channels simultaneously. Fifth, code written with Co-Array Fortran is
portable [13]. Because the extension is part of the language, a compiler must
implement it for all platforms it supports.

5.3 Beyond Future Programming Models

Programming language design follows system architecture development, at
least in the domain of performance-critical computation, including high-
performance computing. Language serves as the medium between a user’s
application and the underlying execution target platform. The challenge to

48 Kendall et al.

programming is to extract the best possible performance from the target par-
allel computer system for a given application while retaining correctness. The
degree of difficulty (length of programming time) strongly depends on the ease
of performance tuning.

Historically, a healthy tension dominating language design has existed be-
tween language abstraction to hide system complexity from the programmer
and low-level language constructs to expose the system mechanisms for direct
and precise control to achieve the best performance. However, parallel pro-
gramming methods have been heavily oriented toward constructs providing
explicit control of low-level mechanisms because the principal target architec-
tures, including massively parallel processors (MPPs) and commodity clusters,
provide little or no support for automatic management of system-wide parallel
computation—hence the popularity of models such as MPI (e.g., MPICH-2)
that expose the underlying system architecture in detail and give the program-
mer complete control of how the application program is mapped to the system
resources, as well as the synchronization of their cooperative operation.

Unfortunately, current-generation high-end systems not only are difficult
to program but often exhibit significant inefficiencies in operation, negating
much of the advantage of exploiting existing commodity components. Future
system architectures for high-end capability (as opposed to capacity) com-
puting in the trans-petaflops performance regime may be custom designed
for the purpose of global parallel execution, unlike conventional MPPs. While
this assertion is considered controversial today, important projects are under
way to achieve this (e.g., the DARPA HPCS program).

If real parallel computing systems reemerge, replacing (at least in part)
aggregated ensembles of commodity microprocessors in the arena of high-end
computing, programming methodologies and languages that represent them
will be devised to reflect their new underlying architectures. While we cannot
know in absolute terms what future programming languages will look like in
this new petaflops computing world, it is possible to identify key attributes of
such languages based on reasonable assumptions about such future machines.
Examples of such assumptions include the following:

• Global address space such that any part of the system state can be accessed
efficiently from any other execution site within the distributed system

• Relaxed consistency methods for efficient copy semantics
• Hardware support for efficient parallel execution for coarse-, medium-, and

fine-grained parallelism
• Rapid context-switching with multi-threaded execution
• Automatic hardware-supported latency hiding
• Efficient synchronization for many forms of coordination including message

passing, producer-consumer, message-driven, and object-oriented
• Dynamic adaptive resource management and load balancing
• Streaming processing for high-temporal-locality computing
• In-memory processing for high-bandwidth, low-locality computing

Parallel Programming Models 49

• High-global-bandwidth, low-latency system-wide communication

Future programming languages for custom petaflops-scale system architec-
tures incorporating some or all of these properties will differ from conventional
programming practices by providing constructs that support a richer descrip-
tive semantics of application parallelism and locality, rather than imperative
specification of explicit mapping of data and code to hardware elements as
is done today. Latency will be hidden in such future machines by a variety
of automatic methods, and a much wider range of forms of parallelism will
be efficiently supported. Thus, the key challenge to future programming is
to make available to compilers, runtime systems, and hardware architecture
descriptions of algorithmic/application parallelism and the synchronization
relationships among coordinated computing actions.

A secondary feature of such future languages is the ability to represent lo-
cality relationships of data and tasks at various levels of granularity as a source
of hints or heuristics for assisting and guiding the system in allocating and
assigning physical resources. This is very different from the conventional prac-
tice of the programmer asserting the exact resource allocation mapping. Not
only does this advanced approach simplify programming, but it also allows the
system to exploit runtime information in conjunction with programmer and
compile-time information to determine optimal placement of logical objects
on the distributed physical resources.

While a rich set of semantics for parallelism representation and locality
relationship description may constitute a major part of future programming
languages for custom-scalable petaflops-scale system architectures, additional
language capabilities will be incorporated to deal with practical aspects of
very large systems. Three factors in particular will drive innovation in future
language design:

1. Performance monitoring will become an integral part of the compiler and
language, not just to show the programmer the bottlenecks, but to permit
advanced compilation and runtime systems to make direct use of observed
operation characteristics for automatic performance tuning, with some
guidance by the programmer.

2. Microcheckpointing will be used to identify key locations in the by the
programmer. Microcheckpointing identifies key locations in the execution
trace where subsets of total program data may be temporarily archived
until some follow on release point is correctly accomplished, at which point
the snapshot of the partial state may be garbage collected. These minor
fall-back points are employed when an error is detected in subsequent
execution without having to restart the entire program.

3. Advanced input/output constructs will be used for generating “information
products.” It will become increasingly impractical to attempt to store
the full raw data from a simulation because the data sets will become
prohibitively large. Also, the data itself, even if visualized, may not be
useful in understanding the implications and consequences of the results.

50 Kendall et al.

An output layer to process the raw data may be necessary to generate
information products that can be many orders of magnitude smaller than
the basic data values but far more meaningful to the scientist or engineer.
Future languages will emphasize high-level information rather than raw
data sets as the principal output content, and the I/O semantics of the
language will reflect this new usage.

6 Final Thoughts

The information in this chapter touches only the tip of the iceberg with respect
to the issues of writing parallel programs. Even long-term practitioners fall
into the many pitfalls of developing parallel codes. Overall, writing parallel
programs is best learned by “getting your hands dirty.”

It is important to use the technology needed to get the job done, but
it is also important to think about what changes might come in the future.
The software development research community is producing new technologies
rapidly and some of these technologies may be useful in high-performance
application development. Although implementing object-oriented technology
in Fortran 77 is impossible, some of the object-oriented concepts can build
better-structured Fortran 77 codes. For example, abstraction and data-hiding
are easily implemented with solid APIs for the functionality required.

What will come in the future? In this book, the chapter on common com-
ponent architecture technology [1] discusses how the CCA framework has
been used successfully to integrate functionality among multiple computa-
tional chemistry codes on parallel platforms. Also, the cross-cutting technolo-
gies of aspect-oriented programming [21] could change the way in which we
construct software infrastructure for event logging, performance monitoring,
or computational steering.

One additional comment is in order. Readers new to parallel computing on
clusters might ask which is the best programming model with respect to per-
formance and scalability. These are only two aspects of the interaction with a
programming model and an application code with many different algorithms.
The programming model also determines the ease of algorithmic development
and thus application development and maintenance, Asking which is best is
similar to asking which preconditioner, which Kyrlov subspace method, or
which editor is the best to use. All programming models have strengths and
weaknesses, and the choice is best made by those actually using the program-
ming model for their particular purpose. MPI offers the greatest availability,
portability, and scalability to large systems. OpenMP offers very good porta-
bility and availability with reasonable scalability on SMP systems. The dis-
tributed shared-memory programming models are best when long-term avail-
ability is possible and there is an appropriate match to the algorithms or
applications involved. Clearly, programming models and their associated exe-
cution models will have to evolve to be able to reach sustained petaflops levels

Parallel Programming Models 51

of computing, which will in time move to computational resources known as
clusters.

Finally, we will put together a series of examples of “working” code for
many of the programming models discussed in this chapter. These will be
designed around small computational kernels or simple applications in order
to illustrate each model. The examples will be available at the Center for
Programming Models for Scalable Parallel Computing website13.

7 Acknowledgments

This work was supported by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38 with Argonne National Laboratory and under
Contract W-7405-ENG-82 at Ames Laboratory. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up, non-exclusive, irrevoca-
ble worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by
or on behalf of the Government. We thank the members of the Center for
Programming Models for Scalable Parallel Computing [67] who have helped
us better understand many of the issues of parallel software development and
the associated programming models. We thank Brent Gorda, Angie Kendall,
Gail W. Pieper, Douglas Fuller, and Professor Gary T. Leavens for reviewing
the manuscript. We also thank the book series editors and referees for their
many helpful comments.

References

1. Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott R. Kohn,
Lois McInnes, Steve R. Parker, and Brent A. Smolinski. Toward a common
component architecture for high-performance scientific computing. In Proceed-
ings of the 8th High Performance Distributed Computing (HPDC’99), 1999.
http://www.cca-forum.org.

2. S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith. PETSc users
manual. Technical Report ANL-95/11 - Revision 2.1.0, Argonne National Lab-
oratory, 2001.

3. R. Bariuso and A. Knies. SHMEM’s user’s guide, 1994. Eagan, MN, Cray
Research, Inc. SN-2515 Rev. 2.2.

4. OpenMP Architecture Review Board. OpenMP Fortran Application Program
Interface, Version 2.0. OpenMP Architecture Review Board, November 2000.
http://www.openmp.org/drupal/mp-documents/fspec20.pdf.

13At this URL: http://www.pmodels.org/ppde

52 Kendall et al.

5. OpenMP Architecture Review Board. OpenMP C and C++ Application Pro-
gram Interface, Version 2.0. OpenMP Architecture Review Board, March 2002.
http://www.openmp.org/drupal/mp-documents/cspec20.pdf.

6. Mark Bull. OpenMP 2.5 and 3.0. In Proceedings of the Workshop on OpenMP
Applications and Tools, WOMPAT 2004, Houston, TX, May 17-18 2004. Invited
Talk.

7. Paul M. Burton, Bob Carruthers, Gregory S. Fischer, Brian H. Johnson, and
Robert W. Numrich. Converting the halo-update subroutine in the MET Office
unified model to Co-Array Fortran. In Walter Zwieflhofer and Norbert Kre-
itz, editors, Developments in Teracomputing: Proceedings of the Ninth ECMWF
Workshop on the Use of High Performance Computing in Meteorology, pages
177–188. World Scientific Publishing, 2001.

8. J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and perfor-
mance of Munin. In Proceedings of the 13th ACM Symp. on Operating Systems
Principles (SOSP-13), pages 152–164, 1991.

9. Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald,
and Ramesh Menon. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers, San Francisco, CA, 2001.

10. DeQing Chen, Sandhya Dwarkadas, Srinivasan Parthasarathy, Eduardo Pin-
heiro, and Michael L. Scott. Interweave: A middleware system for distributed
shared state. In Languages, Compilers, and Run-Time Systems for Scalable
Computers, pages 207–220, 2000.

11. E. Chow, A. Cleary, and R. Falgout. HYPRE User’s manual, version 1.6.0.
Technical Report UCRL-MA-137155, Lawrence Livermore National Laboratory,
Livermore, CA, 1998.

12. D. Clark. OpenMP: A parallel standard for the masses. IEEE Concurrency,
6(1):10–12, January–March 1998.

13. Cristian Coarfa, Yuri Dotsenko, Jason Lee Eckhardt, and John Mellor-
Crummey. Co-array Fortran performance and potential: An NPB experimental
study. In The 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003), College Station, Texas, October 2003.

14. Cray Research. Application Programmer’s Library Reference Manual, 2nd edi-
tion, November 1995. Publication SR-2165.

15. Leonardo Dagum and Ramesh Menon. OpenMP: An industry standard API
for shared-memory programming. IEEE Computational Science & Engineering,
5(1):46–55, January–March 1998.

16. Suchuan Dong and George Em. Karniadakis. Dual-level parallelism for deter-
ministic and stochastic CFD problems. In Proceedings of Supercomputing, SC02,
Baltimore, MD, 2002.

17. Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda
Torczon, and Andy White, editors. Sourcebook of Parallel Computing. Morgan
Kaufmann, 2003.

18. Paul F. Dubois. Ten Good Practices In Scientific Programming. Computing in
Science & Engineering, 1(1), January-February 1999.

19. Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanassis, Rishiyur
Nikhil, and Robert Stets. Cashmere-VLM: Remote memory paging for software
distributed shared memory. In Proceedings of the 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Pro-
cessing, pages 153–159, Los Alamitos, CA, April 1999. IEEE Computer Society.

Parallel Programming Models 53

20. Tarek A. El-Ghazawi, William W. Carlson, and Jesse M.
Draper. UPC Language Specifications Version 1.1.1, October 2003.
http://www.gwu.edu/ upc/docs/upc spec 1.1.1.pdf.

21. Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-Oriented Programming.
Communications of the ACM, 44(10):29–32, October 2001.

22. Earth Simulator home page, http://www.es.jamstec.go.jp.
23. Mike Folk, Albert Cheng, and Kim Yates. HDF5: A file format and I/O library

for high performance computing applications. In Proceedings of Supercomput-
ing’99 (CD-ROM), Portland, OR, November 1999. ACM SIGARCH and IEEE.

24. Parallel Computing Forum. PCF Parallel FORTRAN Extensions. FORTRAN
Forum, 10(3), September 1991. (special issue).

25. Global Array Project. http://www.emsl.pnl.gov/docs/global.
26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill

Nitzberg, William Saphir, and Marc Snir. MPI—The Complete Reference: Vol-
ume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

27. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-
allel Programming with the Message Passing Interface, 2nd edition. MIT Press,
Cambridge, MA, 1999.

28. William Gropp, Ewing Lusk, and Thomas Sterling, editors. Beowulf Cluster
Computing with Linux. MIT Press, 2nd edition, 2003.

29. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Fea-
tures of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

30. William D. Gropp. Learning from the success of MPI. In Burkhard Monien,
Viktor K. Prasanna, and Sriram Vajapeyam, editors, High Performance Com-
puting – HiPC 2001, number 2228 in Lecture Notes in Computer Science, pages
81–92. Springer, December 2001. 8th International Conference.

31. The Open Group. System Interfaces and Headers, Issue 4, Version 2. The Open
Group, 1992. http://www.opengroup.org/public/pubs/catalog/c435.htm.

32. R. Hempel and D. W. Walker. The emergence of the MPI message passing
standard for parallel computing. Computer Standards and Interfaces, 21(1):51–
62, 1999.

33. High Performance Fortran Forum. High Performance Fortran language specifi-
cation. Scientific Programming, 2(1–2):1–170, 1993.

34. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B.
Rao, T. Suel, T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming
library. Parallel Computing, 24(14):1947–1980, December 1998.

35. C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, August 1978.

36. Jay Hoeflinger. Towards industry adoption of OpenMP. In Proceedings of the
Workshop on OpenMP Applications and Tools, WOMPAT 2004, Houston, TX,
May 17–18 2004. Invited Talk.

37. Forrest Hoffman. Writing hybrid MPI/OpenMP code. Linux Magazine, 6(4):44–
48, April 2004. http://www.linux-mag.com/2004-04/extreme 01.html.

38. Y. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel. OpenMP for networks of SMPs.
In Proceedings of the 13th International Parallel Processing Symposium, April
1999.

39. Paul Hyde. Java Thread Programming. SAMS, 1999.
40. IEEE, editor. IEEE Standard for Information Technology-Portable Operating

System Interface (POSIX). IEEE Standard No.: 1003.1, 2004.

54 Kendall et al.

41. Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William
Gropp, and Rajeev Thakur. High performance MPI-2 one-sided communication
over InfiniBand. Technical Report ANL/MCS-P1119-0104, Mathematics and
Computer Science Division, Argonne National Laboratory, 2004.

42. Gabriele Jost, Jesus Labarta, and Judit Gimenez. What multilevel parallel
programs do when you are not watching: A performance analysis case study
comparing MPI/OpenMP, MLP, and nested OpenMP. In Proceedings of the
Workshop on OpenMP Applications and Tools, WOMPAT 2004, pages 29–40,
Houston, TX, May 17-18 2004. Invited Talk.

43. Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-
Marks: Distributed shared memory on standard workstations and operating
systems. In Proceedings of the Winter 94 Usenix Conference, pages 115–131,
January 1994.

44. R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann,
R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Win-
dus, and A. T. Wong. High performance computational chemistry; an overview
of NWChem a distributed parallel application. Computer Physics Communica-
tions, 128:260–283, 2002.

45. Alphaserver SC user guide, 2000. Bristol, Quadrics Supercomputer World Ltd.
46. Scali library user’s guide, 2002. Oslo, Norway, Scali.
47. Message Passing Toolkit: MPI programmer’s manual, document number : 007-

3687-010, 2003. Mountain View, CA, Silicon Graphics Inc.
48. C. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, and M. E. Zosel. The

High Performance Fortran Handbook. MIT Press, 1994.
49. B. Leasure, editor. PCF Fortran: Language Definitons, Version 3.1. The Parallel

Computing Forum, Champaign, IL, 1990.
50. J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham,

A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF: A high-performance
scientific I/O interface. In Proceedings of SC2003, November 2003.

51. Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic
recursive multilevel solver. Numerical Linear Algebra with Applications, 10:485–
509, 2003.

52. Ricky Kendall Lie Huang, Barbara Chapman. OpenMP on distributed memory
via global arrays. In Proceedings of Parallel Computing 2003 (ParCo2003),
Dresden, Germany, September 2–5 2003.

53. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

54. Message Passing Interface Forum. MPI2: A Message Passing Interface standard.
International Journal of High Performance Computing Applications, 12(1–2):1–
299, 1998.

55. Papers about MPI. http://www.mcs.anl.gov/mpi/papers.
56. Kengo Nakajima and Hiroshi Okuda. Parallel Iterative Solvers for Unstruc-

tured Grids Using and OpenMP/MPI Hybrid Programming Model for GeoFEM
Platfrom on SMP Cluster Architectures. Lecture Notes in Computer Science,
2327:437–448, 2002.

57. Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrel. Pthreads Pro-
gramming. O’Reilly & Associates, Inc, 1996.

58. J. Nieplocha, R. Harrison, M. Krishnan, B. Palmer, , and V. Tipparaju. Com-
bining shared and distributed memory models: Evolution and recent advance-

Parallel Programming Models 55

ments of the Global Array Toolkit. In Proceedings of POOHL’2002 workshop of
ICS-2002, New York, NY, 2002.

59. Jarek Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Ar-
rays: A portable “shared memory” programming model for distributed memory
computers. In Proceedings of Supercomputing 1994, SC94, pages 340–349, 1994.

60. Jarek Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Ar-
rays: A nonuniform memory access programming model for high-performance
computers. The Journal of Supercomputing, 10:197–220, 1996.

61. Robert W. Numrich, John Reid, and Kieun Kim. Writing a multigrid solver
using Co-Array Fortran. In Bo K̊agström, Jack Dongarra, Erik Elmroth, and
Jerzy Waśniewski, editors, Applied Parallel Computing: Large Scale Scientific
and Industrial Problems, 4th International Workshop, PARA98, pages 390–399,
Ume̊a, Sweden, June 1998. Springer. Lecture Notes in Computer Science 1541.

62. Robert W. Numrich and John K. Reid. Co-Array Fortran for parallel program-
ming. ACM Fortran Forum, 17(2):1–31, 1998.

63. The Cluster Enabled Omni OpenMP Compiler,
http://phase.hpcc.jp/Omni/Omni-doc/omni-scash.html.

64. OpenMP ARB home page, http://www.openmp.org.
65. K. Parzyszek and R. A. Kendall. GPSHMEM: Application to kernel bench-

marks. In Proceedings of the Fourteenth IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS 2002), pages 404–409,
Cambridge, MA, November 4–6 2002. ACTA Press, Anaheim, CA.

66. K. Parzyszek, J. Nieplocha, and R. A. Kendall. A generalized portable SHMEM
library for high performance computing. In M. Guizani and X. Shen, editors,
Proceedings of the IASTED Parallel and Distributed Computing and Systems
2000, pages 401–406, Las Vegas, Nevada, November 2000. IASTED, Calgary.

67. Center for Programming Models for Scalable Parallel Computing.
http://www.pmodels.org.

68. Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical
Report 90-20, NASA Ames Research Center, Moffett Field, CA, 1990.

69. Hitoshi Sakagami, Hitoshi Murai, Yoshiki Seo, and Mitsuo Yokokawa. 14.9
TFLOPS three-dimensional fluid simulation for fusion science with HPF on the
Earth Simulator. In Proceedings of Supercomputing, 2002.

70. C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22–33, Jan-
uary 1985.

71. B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multi-
level Methods for Elliptic Partial Differential Equations. Cambridge University
Press, New York, 1996.

72. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPI: The Complete Reference. MIT Press, Cambridge, MA, 1995.

73. T.P. Straatsma, E. Aprà, T.L. Windus, W. E.J. de Jong E. J. Bylaska, S. Hi-
rata, M. Valiev, M. T. Hackler, L. L. Pollack, R. J. Harrison, M. Dupuis, D.M.A.
Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. A. Auer, E. Brown, G. Cis-
neros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, J. Nichols,
K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark,
D. Clerc, H. Dachsel, M. Deegan, K K. Dyall, D. Elwood, E. Glendening,
M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh,
Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. San-
drone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang.

56 Kendall et al.

NWChem, A computational chemistry package for parallel computers, Version
4.6, 2004. Pacific Northwest National Laboratory, Richland, WA.

74. Rajeev Thakur, William Gropp, and Brian Toonen. Minimizing synchronization
overhead in the implementation of MPI one-sided communication. In Dieter
Kranzlmüller, Peter Kacsuk, and Jack Dongarra, editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Com-
puter Science, pages 57–67. Springer Verlag, 2004. 11th European PVM/MPI
User’s Group Meeting, Budapest, Hungary.

75. ANSI X3H5. FORTRAN 77 Binding of X3H5 Model for Parallel Programming
Constructs. Draft Version, 1992.

76. Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,
and Alex Aiken. Titanium: A high-performance Java dialect. Concurrency:
Practice And Experience, 10(11–13):825–836, 1998.

